Implementasi Sistem Pakar Pemilihan Obat Berdasarkan Gejala Penyakit Flu Singapura Menggunakan Metode Naïve Bayes

Authors

  • Ray Diphan Universitas Pamulang
  • Dola Irwanto Universitas Pamulang

Keywords:

Expert System, HFMD, Naïve Bayes, RAD, Website, Diagnosis

Abstract

Hand, Foot, and Mouth Disease (HFMD) is a contagious illness that commonly affects children and may cause discomfort, especially in densely populated areas. The difficulty in recognizing early symptoms and selecting the appropriate medication often hinders effective treatment. This study aims to design an expert system to assist the public in diagnosing HFMD symptoms and providing drug recommendations using the Naïve Bayes method. The system was developed as a website-based application to ensure ease of access for the people of Bogor City. The development followed the Rapid Application Development (RAD) methodology, with data obtained from medical sources and expert interviews. System testing was conducted by comparing system-generated diagnoses with expert opinions, resulting in a classification accuracy of 91.7%. These results indicate that the system can be a reliable early diagnostic tool and may assist the public before seeking medical consultation.

References

Anggraini, R., & Agustin, E. (2022). Sistem Pakar Penyakit Telinga Menggunakan Metode Naïve Bayes. Jurnal Generasi Juara, 9(1), 19–26. https://ojs.unpkediri.ac.id/index.php/gj/article/view/19991/3399

Kementerian Kesehatan Republik Indonesia. (2020). Pedoman pengendalian penyakit Flu Singapura (HFMD). Jakarta: Direktorat Jenderal Pencegahan dan Pengendalian Penyakit, Kemenkes RI.

World Health Organization (WHO). (2022). Hand, foot and mouth disease – Key facts. Retrieved from https://www.who.int/news-room/fact-sheets/detail/hand-foot-and-mouth-disease

Centers for Disease Control and Prevention (CDC). (2023). Hand, foot, and mouth disease (HFMD) – Symptoms and treatment. Retrieved from https://www.cdc.gov/hand-foot-mouth/index.html

Fitriyani, N., & Astuti, P. (2021). Sistem Pakar dalam Mengidentifikasi Gejala Penyakit Stroke Menggunakan Metode Naïve Bayes. Jurnal Sistem Informasi dan Sains Teknologi (JSisfotek), 1(2), 35–41. https://jsisfotek.org/index.php/JSisfotek/article/view/69/69

Zulfikar, I., & Prasetyo, B. (2021). Implementasi Metode Naïve Bayes untuk Diagnosa Penyakit Hati. Jurnal Informatika dan Komputer (JIKOM), 6(2), 123–130. https://ejournal.sisfokomtek.org/index.php/jikom/article/view/243/229

Laravel. (2024). The PHP Framework for Web Artisans. Retrieved from https://laravel.com

Putra, Y. H., & Wulandari, S. (2022). Penggunaan Framework Laravel dalam Pengembangan Aplikasi Kesehatan. Jurnal Sistem Informasi dan Teknologi, 10(3), 121–129.

Handayani, L. (2020). Penyakit Flu Singapura: Gejala dan Penanganannya. Buletin Kesehatan Masyarakat, 12(1), 34–40.

Diagrams.net. (2023). Official Documentation. Diakses dari https://www.diagrams.net

Additional Files

Published

22-05-2024

How to Cite

Ray Diphan, & Dola Irwanto. (2024). Implementasi Sistem Pakar Pemilihan Obat Berdasarkan Gejala Penyakit Flu Singapura Menggunakan Metode Naïve Bayes. OKTAL : Jurnal Ilmu Komputer Dan Sains, 4(04), 97–107. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/5266

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.