Analisis Faktor-Faktor yang Mempengaruhi Kinerja Siswa Menggunakan Algoritma Naïve Bayes

Authors

  • Heliota Agung Christiesta Universitas Pamulang
  • Muhammad Ali Sodikin Universitas Pamulang
  • Nazira Apriliani Rosyadi Universitas Pamulang
  • Siti Andiani Universitas Pamulang
  • Devi Yulianti Universitas Pamulang

Keywords:

Naïve Bayes, Student Performance, Data Analysis, Educational Factors, Data Mining, Student Performance Factors, Academic Prediction, Data Preprocessing, Model Evaluation, Rapidminer

Abstract

Improving the quality of education often requires a deep understanding of the factors that influence student performance. This research uses the Naïve Bayes algorithm to analyse data from the ‘Student Performance Factors’ dataset available on Kaggle to identify the influence of variables such as study time, attendance, and family support on student academic outcomes. The analysis process went through a preprocessing stage, including identifying missing values and converting numerical variables into categorical variables. The results show that the Naïve Bayes algorithm has a good ability to predict student performance, with a fairly high accuracy rate. Factors such as family support and study time intensity are the main indicators that influence the prediction results. Model evaluation was conducted using accuracy, precision and recall metrics, to ensure the reliability of the results. The conclusion of this research is that the Naïve Bayes algorithm can be effectively used to support the analysis of student performance in an educational context. By understanding the key factors that influence learning outcomes, the findings can be utilised to design more appropriate strategies to improve the quality of education.

References

Ridwan, M., Suyono, H., & Sarosa, M. (2013). Systematic Literature Review Prediksi Kinerja Siswa: Tren Penelitian, Metode, dan Atribut. Jurnal Bisnis Digital dan Sistem Informasi, 1(1), 1-8.

Shamsi, M. S., & Lakshmi, J. (2016). A Comparative Analysis of Classification Data Mining Techniques: Deriving Key Factors Useful for Predicting Students Performance. arXiv preprint arXiv:1606.05735.

Ramesh, V., Parkavi, R., & Ramar, K. (2013). Predicting Student Performance: A Statistical and Data Mining Approach. International Journal of Computer Applications, 63(8), 35-39.

Kumar, B., & Pal, S. (2011). Mining Educational Data to Analyze Students' Performance. International Journal of Advanced Computer Science and Applications, 2(6), 63-69.

Baradwaj, B. K., & Pal, S. (2012). Mining Educational Data to Analyze Students' Performance. arXiv preprint arXiv:1201.3417.

Yadav, S. K. and Pal, S. (2012) ‘Data Mining : A Prediction for Performance Improvement of Engineering Students using Classification’, World of Computer Science and Information Technology Journal WCSIT, 2(2), pp. 51–56. doi: 10.1142/9789812771728_0012.

Yadav, S., Bharadwaj, B. and Pal, S. (2012) ‘Data mining applications: A comparative study for predicting student’s performance’, International Journal of Innovative Technology & Creative Engineering, 1(12), pp. 13–19. Available at: http://arxiv.org/abs/1202.4815.

Ridwan, M., Suyono, H. and Sarosa, M. (2013) ‘Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier’, Eeccis, 7(1), pp. 59–64.

Additional Files

Published

15-01-2025

How to Cite

Heliota Agung Christiesta, Muhammad Ali Sodikin, Nazira Apriliani Rosyadi, Siti Andiani, & Devi Yulianti. (2025). Analisis Faktor-Faktor yang Mempengaruhi Kinerja Siswa Menggunakan Algoritma Naïve Bayes . OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(11), 2873–2879. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/4959