Literatur Review: Klasifikasi Penyakit Menular Seksual (PMS) Menggunakan Naïve Bayes dan Metode Machine Learning Terkait
Keywords:
Sexually transmitted diseases, Classification, Naïve Bayes Method and Machine Learning Method, K-Nearest Neighbor (KNN), Decision TreeAbstract
Sexually transmitted diseases (STD) are a significant health problem worldwide. Correct identification and classification of this disease is essential to support early diagnosis and effective treatment. Various machine learning methods, including Naïve Bayes, have been used to automatically classify these diseases. This article reviews existing literature regarding the use of the Naïve Bayes method and other machine learning techniques in PMS classification. Based on analysis of at least five research journals, Naïve Bayes shows good performance in disease classification, although the results still depend on data quality. Several other methods such as Decision Tree, Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) are also often used as comparisons in this research. This review provides insight into the strengths and weaknesses of each method in PMS classification as well as the potential for their integration to increase the accuracy and speed of diagnosis.
References
Agustin, Y. H., Baswardono, W., & Pratama, F. I. (2022). Aplikasi Sistem Pakar Diagnosis Penyakit HIV/AIDS Menggunakan Metode Forward Chaining Berbasis Web. Jurnal Algoritma, 19(2), 611–619.
Ammal, B. F. P., Hidayat, N., & Suprapto, S. (2018). Implementasi Metode Naive Bayes-Certainty Factor Untuk Diagnosis Penyakit Pada Kelamin Laki-Laki. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(12), 6219–6226.
Azzahra, N. D., Ambarwati, A., Desiani, A., Maiyanti, S. I., & Ramayanti, I. (2024). Perbandingan Algoritma K-Nearest Neighbor Dan Logistic Regression Dalam Klasifikasi Penyakit Kanker Serviks. Energy: Jurnal Ilmiah Ilmu-Ilmu Teknik, 14(1), 1–8.
Cuswantoro, Y. T., Hidayat, N., & Dewi, R. K. (2018). Diagnosis Penyakit Kelamin Laki-Laki Menggunakan Metode Bayesian Network. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(12), 6855–6860.
Hikmah, N. (2017). Pemanfaatan Metode Naïve Bayes Classifier Dalam Pembuatan Sistem Pakar Untuk Diagnosa Penyakit Kelamin. Energy: Jurnal Ilmiah Ilmu-Ilmu Teknik, 7(2), 50–55.
Irawan, A. (2023). Sistem Pakar Diagnosis Penyakit Kelamin Menggunakan Metode Certainty Factor (Cf). Jurnal Teknologi Pintar, 3(2).
Nazaruddin, D. A., Bachtiar, F. A., & Dewi, R. K. (2019). Klasifikasi Penyakit Kelamin Pada Wanita Dengan Menggunakan Kombinasi Metode K-Nearest Neighbor Dan Naïve Bayes Classifier. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(4), 3266–3274.
Perkasa, E. R., & Herliana, A. (2020). Sistem Pakar Diagnosis Penyakit Menular Seksual Menggunakan Metode Decision Tree Berbasis Android. Eprosiding Sistem Informasi (Potensi), 1(1), 285–299.
Siburian, N., Cholissodin, I., & Adikara, P. P. (2020). Penerapan Metode Fuzzy K-Nearest Neighbor Pada Klasifikasi Penyakit Menular Seksual Pria. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(11), 4096–4102.
Yuliastuti, G. E., Prabiantissa, C. N., & Rizki, A. M. (2022). Klasifikasi Penyakit Menular Seksual Menggunakan Naïve Bayes. Integer: Journal Of Information Technology, 7(1).