Analisis Sentimen Opini Publik Mengenai Wajib BPJS Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes
Keywords:
Text Mining, Sentiment Analysis, Naïve Bayes, BPJS KesehatanAbstract
On January 6, 2022, President Joko Widodo signed the Presidential Instruction (Inpres) to the public. One of the points of Presidential Instruction Number 1 of 2022 concerning BPJS as a public service obligation, is a public discussion, concerning applicants for SIMs, STNK marks, and Police Certificates (SKCK) that must accompany BPJS Health membership. Due to the many public complaints about presidential education guidelines, this study was conducted to assess public perceptions using the Naive Bayes algorithm using TF-IDF feature selection. This study uses 362 data which is divided into two classes, positive and negative. The classification process gives the best accuracy results with a percentage of 88.89% using the selection of the TF-IDF function with 90% training data and 10% test data.
References
Fariz, T. R., Suhardono, S., & Verdiana, S. (2021). Pemanfaatan Data Twitter Dalam Penanggulangan. Cogito Smart Journal, 135-147.
Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan Metode Naive Bayes dan Support Vector Machine pada Analisis Sentimen Twitter. SMATIKA Jurnal, Volume 10 Nomor 02 71-76.
Juliansa, H. (2019). DATA MINING ROUGH SET DALAM MENGANALISA KINERJA DOSEN STMIK BINA NUSANTARA JAYA LUBUKLINGGAU. JUSIM (Jurnal Sistem Informasi Musirawas), 11-17.
Prana, P. A., Indriati, & Adikara, P. P. (2019). Klasifikasi Komentar Body Shaming Beauty Vlogger Pada Youtube Menggunakan Metode BM 25 dan K-Nearest Neighbot. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 7328-7334.
Utami, D. S., & Erfina, A. (2022). Analisis Sentimen Objek Wisata Bali Di Google Maps Menggunakan Algoritma Naive Bayes. Jurnal Sains Komputer & Informatika (J-SAKTI), 418-427.
Wulandari, P. D., Enri, U., & Primajaya, A. (2020). Analisis Sentimen Terhadap Kenaikan Iuran. JURNAL ILMU KOMPUTER DAN TEKNOLOGI, 18-22.