Analisis Sentimen Tweet Terhadap Penggunaan Layanan JNE & JNT Menggunakan Metode Naive Bayes

Authors

  • Clarisa Novita Universitas Pamulang
  • Farida Nurlaila Universitas Pamulang

Keywords:

Shipping Expedition, Nave Bayes, Python, Scraping

Abstract

Delivery service is something that is close to the community, delivery services are still used by the community because it is considered very important to send goods over long or close distances. Because as we all know, as we all know, that in the context of accelerating the handling of Covid-19 (Corona Virus Disease 2019), the government issued PP No. 21 of 2020 concerning PSBB (Large-Scale Social Restrictions). With the enactment of PSBB, it brings a new culture of digitization in many sectors, including the social public sector. So that most people's shopping activities are forced to switch to using an online system and make delivery services very functional at this time. Therefore, the researcher intends to conduct this research which is intended to determine customer satisfaction with JNE and JNT shipping expeditions. The research was conducted by taking tweet sentiment using Python, and then analyzing the respondents' sentiment using the Naïve Bayes method. A total of 955 data were obtained, then the researchers took as many as 243 for retesting, data collection was carried out on January 31, 2022 to February 16, 2022. The results of the classification of positive, negative and neutral sentiment tweets from existing sentences for each delivery service have been obtained that JNE got 0 positive responses, 18 negative responses and 56 neutral responses. Meanwhile, JNT received 0 positive responses, 2 neutral responses and 167 negative responses. From this it can be explained that there are still many users of JNE and JNT shipping expedition services that have not received good service. The results of the test using the Nave Bayes method with the Gaussian Density formula on continuous data resulted in an accuracy of 58.02%, precision 43.33%, recall 41.67%.

References

Joko Suntoro. (2019). Data Mining : Algoritma dan Implementasi dengan Pemrograman PHP.

Afrizal, S., Irmanda, H. N. and Falih, N. (2019) ‘Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap Kehadiran Mass Rapid Transit’, 4221, pp. 157–168.

Agusta, L. (2009) ‘Perbandingan Algoritma Stemming Porter Dengan Algoritma Nazief & Adriani Untuk Stemming Dokumen Teks Bahasa Indonesia’, Konferensi Nasional Sistem dan Informatika 2009, (KNS&I09-036), pp. 196–201.

Andika, L. A., Azizah, P. A. N. and Respatiwulan, R. (2019) ‘Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier’, Indonesian Journal of Applied Statistics, p.

doi: 10.13057/ijas.v2i1.29998.

APJII (2020) ‘Laporan survei internet apjii 2019 – 2020’, Asosiasi Penyelenggara Jasa Internet Indonesia, 2020, pp. 1–146.

Attabi, A. W., Muflikhah, L. and Fauzi, M. A. (2018) ‘Penerapan Analisis Sentimen untuk Menilai Suatu Produk pada Twitter Berbahasa Indonesia dengan Metode Naïve Bayes Classifier dan Information Gain’, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(11), pp. 4548–4554.

Fauziyyah, A. K. (2020) ‘Analisis Sentimen Pandemi Covid19 Pada Streaming Twitter Dengan Text Mining Python’, Jurnal Ilmiah SINUS, 18(2), p. 31. doi: 10.30646/sinus.v18i2.491.

Hadna, M. S., Santosa, P. I. and Winarno, W. W. (2016) ‘Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter’, Seminar Nasional Teknologi Informasi dan Komunikasi, 2016(Sentika), pp. 57–64.

Mujilahwati, S. (2016) ‘Pre-Processing Text Mining Pada Data Twitter’, Seminar Nasional Teknologi Informasi dan Komunikasi, 2016 (Sentika), pp. 2089–9815.

Mustofa Hidayat, A. and Syafrullah, M. (2017) ‘Algoritma Naïve Bayes Dalam Analisis Sentimen Untuk Klasifikasi Pada Layanan Internet PT.XYZ’, Jurnal TELEMATIKA MKOM, 9(2), pp. 91–95.

Oktasari, L., Chrisnanto, Y. H. and Yuniarti, R. (2016) ‘Text Mining Dalam Analisis Sentimen Asuransi Menggunakan Metode Niave Bayes Classifier’, Prosiding SNST, 7, pp. 37–42.

Putra, R. A. (2019) ‘Penerapan Naïve Bayes Classifier dengan Gaussian Function Untuk Menentukan Kelompok UKT’, Jurnal Ilmiah Informatika Global, 9(2), pp. 112–117. doi: 10.36982/jig.v9i2.583.

Rahutomo, F. and Ririd, A. R. T. H. (2019) ‘Evaluasi Daftar Stopword Bahasa Indonesia’, Jurnal Teknologi Informasi dan Ilmu Komputer, 6(1), p. 41. doi: 10.25126/jtiik.2019611226.

Rustiana, D. and Rahayu, N. (2017) ‘Analisis sentimen pasar otomotif mobil’:, Jurnal SIMETRIS, 8(1), pp. 113–120.

Saleh, A. (2015) ‘Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga’, Creative Information Technology Journal, 2(3), pp. 207–217.

Santoso, E. B. and Nugroho, A. (2019) ‘Analisis Sentimen Calon Presiden Indonesia 2019 Berdasarkan Komentar Publik Di Facebook’, Eksplora Informatika, 9(1), pp. 60–69. doi: 10.30864/eksplora.v9i1.254.

Sudiantoro, A. V. and Zuliarso, E. (2018) ‘Analisis Sentimen Twitter Menggunakan Text Mining Dengan Algoritma NAÏVE BAYES CLASSIFIER’, Prosiding SINTAK 2018, 10(2), pp. 398–401.

Tala, F. Z. (2003) ‘A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia’, M.Sc. Thesis, Appendix D, pp, pp. 39–46.

Wahid, D. H. and SN, A. (2016) ‘Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity’, IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 10(2), p. 207. doi: 10.22146/ijccs.16625.

Wahyudi, D., Susyanto, T. and Nugroho, D. (2017) ‘Implementasi Dan Analisis Algoritma Stemming Nazief & Adriani Dan Porter Pada Dokumen Berbahasa Indonesia’, Jurnal Ilmiah SINUS, 15(2), pp. 49–56. doi: 10.30646/sinus.v15i2.305.

Zulfa, I. and Winarko, E. (2017) ‘Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network’, IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 11(2), p. 187. doi: 10.22146/ijccs.24716.

Additional Files

Published

05-04-2024

How to Cite

Clarisa Novita, & Farida Nurlaila. (2024). Analisis Sentimen Tweet Terhadap Penggunaan Layanan JNE & JNT Menggunakan Metode Naive Bayes. OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(04), 954–964. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/2612