Analisis Perbandingan Metode Logika Fuzzy Untuk Mendiagnosis Penyakit Diabetes Melitus

Authors

  • Hapid Hidayat Universitas Pamulang
  • Khoirun Nurul Musthofa Universitas Pamulang
  • Rizki Octavian Universitas Pamulang
  • Rama Firdaus Universitas Pamulang
  • Perani Rosyani Universitas Pamulang

Keywords:

Fuzzy Logic, Mamdani, Tsukamoto, Sugeno

Abstract

Diabetes Mellitus is a disease caused by high levels of sugar in the blood. Generally, this disease is often
felt and experienced in adults, this occurs when the body tries to hold back insulin or does not produce enough
insulin. With the increasing number of people with Diabetes Mellitus, researchers continue to try to find a cure for
this disease. The fuzzy logic method can be used to produce fairer decisions and can diagnose diabetes mellitus. In
this study, a comparison of five journals with three fuzzy logic methods was carried out, namely the Mamdani Fuzzy
Method, the Sugeho Fuzzy Method, and the Tsukamoto Fuzzy Method. The fuzzy method used is expected to
determine the method that has a high level of accuracy in diagnosing diabetes mellitus. From the comparison
results, it is known that the Mamdani method has an accuracy value of 96% to 100% higher than the Sugeno and
Tsukamoto methods.

References

Adrial, R. (2018). Fuzzy Logic Modeling Metode Sugeno Pada Penentuan Tipe Diabetes Melitus Menggunakan

Matlab. Jurnal Ilmiah Informatika, 6(01), 62.

Kemenkes. (2013). Diabetes Mellitus penyebab kematian nomor 6 di dunia.

Niswati, Z. F. A. M. A. P. (2017). Diagnosa Diabetes Mellitus Menggunakan Fuzzy Inference System Pada

Puskesmas Pasar Rebo. Dm, 1–8.

Nizar, H., Shafira, A. S., Aufaresa, J., Awliya, M. A., & Athiyah, U. (2021). Perbandingan Metode Logika Fuzzy

Untuk Diagnosa Penyakit Diabetes. Explore:Jurnal Sistem Informasi Dan Telematika, 12(1), 37.

https://doi.org/10.36448/jsit.v12i1.1763

Rachmawati, A. (2017). Fuzzy Logic Metode Mamdani Untuk Membantu Diagnosis Penyakit Diabetes Mellitus.

Widyastuti, W. (2012). Hubungan Antara Depresi Dengan Kepatuhan Melaksanakan Diit Pada Diabetesi di

Pekalongan. IV(1).

Yusida, M., Kartini, D., Farmadi, A., Nugroho, R. A., & Muliadi. (2017). Implementasi Fuzzy Tsukamoto Dalam

Mendiagnosa. Ilmu Komputer(KLIK), 04(02), 233–246. maulanayanmas@gmail.com

Za’imatun Niswati, Aulia Paramita, F. A. M. (2016). Aplikasi Fuzzy Logic dalam Diagnosa Penyakit Diabetes

Mellitus pada PUSKESMAS di Jakarta Timur. Jurnal Nasional Teknologi Dan Sistem Informasi, 2(3), 21–

https://doi.org/10.25077/teknosi.v2i3.2016.21-30

Bacin, S. (2021). Sistem Pakar Untuk Mendiagnosa Penyakit Diabetes Menggunakan Metode Inferensi Fuzzy

Mamdani. 1(3), 188–194.

Maulana, Y. A., & Nurhadiyono, B. (2017). Implementasi Fuzzy Tsukamoto Dalam Mendiagnosa. Ilmu

Komputer(KLIK), 04(02), 233–246. maulanayanmas@gmail.com

Downloads

Published

2022-06-30

How to Cite

Hapid Hidayat, Khoirun Nurul Musthofa, Rizki Octavian, Rama Firdaus, & Perani Rosyani. (2022). Analisis Perbandingan Metode Logika Fuzzy Untuk Mendiagnosis Penyakit Diabetes Melitus. BISIK : Jurnal Ilmu Komputer, Hukum, Kesehatan Dan Sosial Humaniora, 1(1), 40–45. Retrieved from https://journal.mediapublikasi.id/index.php/bisik/article/view/901

Most read articles by the same author(s)