APLIKASI PEMILIHAN POWDER MINUMAN BERDASARKAN REFERENSI KONSUMEN MENGGUNAKAN FUZZY LOGIC
Keywords:
Powder, Mamdani Method, Matlab Software.Abstract
Powder / beverage powder is an easy way to create a business or small business for humans where with
a little capital we can set up a beverage business. The purpose of this study is to provide information to the public
in the form of a reference for the selection of beverage powder based on consumer interest, so that it can be used
as a decision making material in buying powder. The Mamdani method is a method that is able to solve problems
in terms of powder selection based on consumer references. The working process of the Sugeno method consists of
four parts, namely fuzification, inference engine and implication function amplification, the Mamdani method has
the characteristics of using the AND operator and using the min-max value. This research is a decision-making
system in powder selection based on references from consumers by looking at four aspects of criteria such as price,
quality, taste, and packaging variables, these four aspects can be used as a reference in the selection of powder/drink
powder. choice. Sugeno's fuzzy logic to get the final value. The Mamdani method is a very effective method in
choosing a powder that suits the needs and interests of consumers so that potential consumers can easily choose a
powder according to their interests and desired criteria.
References
Aprilia, E. (2013). Analisis Penggunaan Algoritma Breadth First Search Dalam Konsep Artificial Intellegencia.
Time, II(2), 18–26.
Jarti, N., & Putri, W. L. (2020). PENERAPAN FUZZY INFERENCE SYSTEM PEMILIHAN DESAIN
INTERIOR. 7(1), 75–82.
Bagus Sukma S.S. (2016). Prediksi Jumlah Produksi Powder Menggunakan Metode Logika Fuzzy (Studi Kasus :
Jakarta Powder Supply). Teknologi Informasi, 4(2), 59–65.
Jufriadi, J., Nurcahyo, G. W., & Sumijan, S. (2020). Logika Fuzzy dengan Metode Mamdani dalam Menentukan
Tingkat Peminatan Tipe Motor Honda. Jurnal Informatika Ekonomi Bisnis, 3, 7–11.
https://doi.org/10.37034/infeb.v3i1.60.
Rizki, S. N., & Tipa2, H. (2019). Implementasi Fuzzy Inference System Untuk Mengoptimalkan Pembagian Beban
Koneksi. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, x(1), 1– 7
Ratama, N., & Munawaroh, M. (2020). Implementasi Metode Fuzzy Tsukamoto Untuk Deteksi Dini
Autisme Pada Balita Berbasis Android. Jurnal Informatika dan Rekayasa Elektronik, 3(2), 129-
Bacin, S. (2021). Sistem Pakar Untuk Mendiagnosa Penyakit Diabetes Menggunakan Metode Inferensi
Fuzzy Mamdani. 1(3), 188–194.
Maulana, Y. A., & Nurhadiyono, B. (2017). Implementasi Fuzzy Tsukamoto Dalam Mendiagnosa. Ilmu
Komputer(KLIK), 04(02), 233–246. maulanayanmas@gmail.com
Nisa, A. K., Abdy, M., & Zaki, A. (2020). Penerapan Fuzzy Logic untuk Menentukan Minuman Susu
Kemasan Terbaik dalam Pengoptimalan Gizi. Journal of Mathematics Computations and
Statistics, 3(1), 51. https://doi.org/10.35580/jmathcos.v3i1.19902
Safitri, W., & Abadi, A. M. (2015). Aplikasi Fuzzy Logic Dalam Pemilihan Makanan Mie Instan.
Seminar Nasional Matematika Dan Pendidikan Matematika Uny 2015, 381–388.