Perancangan Sistem Sederhana Deteksi Helm Sepeda Motor dengan Metode Convolutional Neural Network Dan Algoritma YOLO v3
Keywords:
Helmet Detection, Convolutional Neural Network, YOLO v3, COCO Dataset, Riding SafetyAbstract
Traffic accidents are one of the most common causes of death in the world, and helmet use has been effective proved in reducing the risk of head injuries for motorcyclists. Therefore, it is crucial to ensure that motorcyclists always wear helmets while riding. One method to detect helmet use is by utilizing object recognition technology based on Convolutional Neural Networks (CNN). This study focus on design and implement a simple helmet detection system using CNN methods and the YOLO v3 model for real-time detection. The system is expected to accurately detect helmet use by riders. In this research, the YOLO v3 model is trained using the COCO dataset, which includes various images with diverse contexts. The results of this implementation show that the system can detect helmet use effectively under various lighting conditions and environments. This demonstrates the potential use of a helmet detection system based on CNN and YOLO in enhancing riding safety.
References
Bahtiar, H. (n.d.). SISTEM PENDETEKSI HELM YANG DIKENAKAN PENGENDARA SEPEDA MOTOR UNTUK SAFETY RIDING BERBASIS RASPBERRY PI.
Baihaqi, A., Firliansyah, H., Jaelani, R., Rangga Paksi Adi Jaya, T., & Rosyani, P. (n.d.). Systematic Literature Review Mendeteksi Wajah Manusia Menggunakan Metode YOLO (You Only Look Once). https://jurnalmahasiswa.com/index.php/jriin
Elisa Nalawati, R., Yanti Liliana, D., & Bambang Warsuta, dan. (2023). Peningkatan Keselamatan Berkendara dengan Fitur Deteksi Helm pada Sistem Transportasi Cerdas (Vol. 2, Issue 1).
Fauzan Arif, M., Nurkholis, A., Laia, S., & Rosyani, P. (2023). Deteksi Kendaraan Dengan Metode YOLO. Jurnal Artificial Inteligent Dan Sistem Penunjang Keputusan, 01(01). https://jurnalmahasiswa.com/index.php/aidanspk [2]
Gunadi, K., & Setyati, E. (n.d.). Deteksi Helm pada Pengguna Sepeda Motor dengan Metode Convolutional Neural Network.
Hidayat, T., Firmansyah, R. F., Ilham, M., Yazid, M. N., & Rosyani, P. (2023). Analisis Kinerja Dan Peningkatan Kecepatan Deteksi Kendaraan Dalam Sistem Pengawasan Video Dengan Metode YOLO. JRIIN: Jurnal Riset Informatika Dan Inovasi, 1(2). https://jurnalmahasiswa. com/index.php/jriin [1]
Khoiriyah, K., Achmad, F., & Armawan, A. (n.d.). Deteksi Pengendara Motor Tanpa Menggunakan Helm Dengan Algoritma Deep Learning Yolo.
Lisensi Lisensi Internasional Creative Commons Attribution-ShareAlike 4.0. (n.d.). https://doi.org/10.52158/jacost.637
Priyo Anugrah, M., Fatkhurrozi, B., Teguh Setiawan, H., & Tidar Magelang Jawa Tengah, U. (n.d.). Deteksi Helm Pengendara dan Plat Nomor Kendaraan pada CCTV Lampu Lalu Lnitas Menggunakan Algoritma YOLO. Jurnal Vocational Teknik Elektronika dan Informatika. http://ejournal.unp.ac.id/index.php/voteknika/index
Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http://arxiv.org/abs/1804.02767
Zikri Amanda, A., Puji Lestari, D., Ahmad Basori, J., Satifa, R., & Rosyani, P. (2023). Hal 999-999 PERBANDINGAN METODE YOU ONLY LOOK ONCE (YOLO) DAN METODE SINGLE SHOT DETECTOR (SSD) DALAM PENDETEKSIAN OBJEK DENGAN FOKUS PADA WAJAH. In Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan (Vol. 1, Issue 1). https://jurnalmahasiswa.com/index.php/aidanspk [2].