Literature Review: Klasifikasi Penyakit Daun Dengan Deep Learning Pada Tanaman Kacang

Authors

  • Ade Ahmad Mirza Universitas Pamulang
  • Ivan Afriza Universitas Pamulang
  • Muhamad Rizky Fadillah Universitas Pamulang
  • Muhammad Julyanto Sarwinata Universitas Pamulang
  • Perani Rosyani Universitas Pamulang

Keywords:

Leaf Disease Classification, Deep Learning, Groundnut Crop, Convolutional Neural Network (CNN), Modified K-Nearest Neighbor (MKNN), Smart Agriculture

Abstract

This research discusses the implementation of deep learning for leaf disease classification in peanut plants, focusing on Convolutional Neural Network (CNN), Modified K-Nearest Neighbor (MKNN), and Multiclass Support Vector Machine (SVM) models. The main objective is to evaluate the accuracy and efficiency of the models in automatically detecting leaf disease types to support smart agricultural practices. Using a dataset of infected peanut leaf images, the proposed CNN model achieved an accuracy of 95%, superior to the MKNN method which obtained an accuracy of 89% and SVM of 87%. These results demonstrate the potential of CNNs in fast and accurate plant disease classification, while highlighting the need for specific datasets to improve performance in real environments. This study provides guidance for further development in the application of deep learning in agriculture, particularly in peanut plant disease detection systems.

References

Aion Suharis Widodo. (2022). SISTEM PAKAR PENYAKIT DAUN PADA KACANG TANAH MENGGUNAKAN CNN (CONVOLUTIONAL NEURAL NETWORK).

Al Fadil Syahputra, S., Mita Azizah, N., Aiman, J., Ainun Nikmah, D., & Rosyani, P. (2024). Syahrul Al Fadil Syahputra | https CITRA WAJAH MENGGUNAKAN DEEP LEARNING ALGORITMA Convolutional Neural Network (CNN). Jurnal Artificial Inteligent Dan Sistem Penunjang Keputusan, 2(1).

Auza, H., Bagus Arisila Putra, M., Azril Saputra, M., Hartono, R., & Rosyani, P. (2024). Implementasi Deep Learning untuk Deteksi Wajah dan Ekspresi menggunakan Algoritma Convolutional Neural Network (CNN) dengan OpenCV. In Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan (Vol. 1, Issue 4). https://jurnalmahasiswa.com/index.php/aidanspk

BRAHMA RATIH RAHAYU FAKHRUNNIA. (2021). KLASIFIKASI PENYAKIT DAUN TANAMAN KACANG TANAH.

Imanulloh, S. B., Muslikh, A. R., & Setiadi, D. R. I. M. (2023). Plant Diseases Classification based Leaves Image using Convolutional Neural Network. Journal of Computing Theories and Applications, 1(1), 1–10. https://doi.org/10.33633/jcta.v1i1.8877

M.P., A., & Reddy, P. (2023). Ensemble of CNN models for classification of groundnut plant leaf disease detection. Smart Agricultural Technology, 6. https://doi.org/10.1016/j.atech.2023.100362

Putra, A. P., Mulyana, I., Maryana, S., & Susanti, F. (2019). Implementasi Multiclass Support Vector Machine Pada Sistem Rekomendasi Obat Berdasarkan Gejala Penyakit. Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO AAU), 1(1).

Silvia, N., Cahyani, T., Hidayat, N., & Santoso, E. (2023). Klasifikasi Penyakit Tanaman Kacang Tanah menggunakan Metode MKNN (Modified K-Nearest Neighbor) (Vol. 7, Issue 3). http://j-ptiik.ub.ac.id

Additional Files

Published

17-12-2024

How to Cite

Ade Ahmad Mirza, Ivan Afriza, Muhamad Rizky Fadillah, Muhammad Julyanto Sarwinata, & Perani Rosyani. (2024). Literature Review: Klasifikasi Penyakit Daun Dengan Deep Learning Pada Tanaman Kacang . OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(10), 2623–2627. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/4663

Most read articles by the same author(s)

1 2 3 4 5 > >>