Perancangan Sistem Sederhana Deteksi Helm Sepeda Motor dengan Metode Convolutional Neural Network Dan Algoritma YOLO v3

Authors

  • Ibnu Hajar Universitas Pamulang
  • Ahmad Rifa`i Universitas Pamulang
  • Ilham Fauzi Alam Universitas Pamulang
  • Andang Ramadhan Universitas Pamulang
  • Perani Rosyani Universitas Pamulang

Keywords:

Helmet Detection, Convolutional Neural Network, YOLO v3, COCO Dataset, Riding Safety

Abstract

Traffic accidents are one of the most common causes of death in the world, and helmet use has been effective proved in reducing the risk of head injuries for motorcyclists. Therefore, it is crucial to ensure that motorcyclists always wear helmets while riding. One method to detect helmet use is by utilizing object recognition technology based on Convolutional Neural Networks (CNN). This study focus on design and implement a simple helmet detection system using CNN methods and the YOLO v3 model for real-time detection. The system is expected to accurately detect helmet use by riders. In this research, the YOLO v3 model is trained using the COCO dataset, which includes various images with diverse contexts. The results of this implementation show that the system can detect helmet use effectively under various lighting conditions and environments. This demonstrates the potential use of a helmet detection system based on CNN and YOLO in enhancing riding safety.

References

Bahtiar, H. (n.d.). SISTEM PENDETEKSI HELM YANG DIKENAKAN PENGENDARA SEPEDA MOTOR UNTUK SAFETY RIDING BERBASIS RASPBERRY PI.

Baihaqi, A., Firliansyah, H., Jaelani, R., Rangga Paksi Adi Jaya, T., & Rosyani, P. (n.d.). Systematic Literature Review Mendeteksi Wajah Manusia Menggunakan Metode YOLO (You Only Look Once). https://jurnalmahasiswa.com/index.php/jriin

Elisa Nalawati, R., Yanti Liliana, D., & Bambang Warsuta, dan. (2023). Peningkatan Keselamatan Berkendara dengan Fitur Deteksi Helm pada Sistem Transportasi Cerdas (Vol. 2, Issue 1).

Fauzan Arif, M., Nurkholis, A., Laia, S., & Rosyani, P. (2023). Deteksi Kendaraan Dengan Metode YOLO. Jurnal Artificial Inteligent Dan Sistem Penunjang Keputusan, 01(01). https://jurnalmahasiswa.com/index.php/aidanspk [2]

Gunadi, K., & Setyati, E. (n.d.). Deteksi Helm pada Pengguna Sepeda Motor dengan Metode Convolutional Neural Network.

Hidayat, T., Firmansyah, R. F., Ilham, M., Yazid, M. N., & Rosyani, P. (2023). Analisis Kinerja Dan Peningkatan Kecepatan Deteksi Kendaraan Dalam Sistem Pengawasan Video Dengan Metode YOLO. JRIIN: Jurnal Riset Informatika Dan Inovasi, 1(2). https://jurnalmahasiswa. com/index.php/jriin [1]

Khoiriyah, K., Achmad, F., & Armawan, A. (n.d.). Deteksi Pengendara Motor Tanpa Menggunakan Helm Dengan Algoritma Deep Learning Yolo.

Lisensi Lisensi Internasional Creative Commons Attribution-ShareAlike 4.0. (n.d.). https://doi.org/10.52158/jacost.637

Priyo Anugrah, M., Fatkhurrozi, B., Teguh Setiawan, H., & Tidar Magelang Jawa Tengah, U. (n.d.). Deteksi Helm Pengendara dan Plat Nomor Kendaraan pada CCTV Lampu Lalu Lnitas Menggunakan Algoritma YOLO. Jurnal Vocational Teknik Elektronika dan Informatika. http://ejournal.unp.ac.id/index.php/voteknika/index

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http://arxiv.org/abs/1804.02767

Zikri Amanda, A., Puji Lestari, D., Ahmad Basori, J., Satifa, R., & Rosyani, P. (2023). Hal 999-999 PERBANDINGAN METODE YOU ONLY LOOK ONCE (YOLO) DAN METODE SINGLE SHOT DETECTOR (SSD) DALAM PENDETEKSIAN OBJEK DENGAN FOKUS PADA WAJAH. In Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan (Vol. 1, Issue 1). https://jurnalmahasiswa.com/index.php/aidanspk [2].

Additional Files

Published

02-07-2024

How to Cite

Ibnu Hajar, Ahmad Rifa`i, Ilham Fauzi Alam, Andang Ramadhan, & Perani Rosyani. (2024). Perancangan Sistem Sederhana Deteksi Helm Sepeda Motor dengan Metode Convolutional Neural Network Dan Algoritma YOLO v3. OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(07), 1796–1802. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/4308

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>