Literature Review: Klasifikasi Penyakit Paru-paru Menggunakan Metode Decision Tree

Authors

  • Angga Rakhmansyah Universitas Pamulang
  • Perani Rosyani Universitas Pamulang

Keywords:

Lung Disease Classification System, Decision Tree Algorithm, Systematic Literature Review, Machine Learning

Abstract

The global increase in lung disease cases presents a serious healthcare challenge requiring early detection systems for optimal treatment. This study examines the implementation of the Decision Tree algorithm in classifying various types of lung diseases based on a comprehensive analysis of recent studies. The methodology employs a Systematic Literature Review (SLR) approach by thoroughly analyzing five selected scientific publications published between 2023-2024. Evaluation results demonstrate that the Decision Tree algorithm shows promising performance in lung condition classification with accuracy ranges from 56.7% to 99.67%. Research findings indicate that Decision Tree algorithm optimization can be achieved through the integration of appropriate data preprocessing techniques and careful feature selection. Based on the analysis conducted, it can be concluded that Decision Tree is a reliable method for lung disease classification, particularly when implemented with optimized parameter configurations and proportional datasets.

References

Anggraeni, F., Kristiawan, N., Lutfiati, R., Dirgantara, Y., & Rosyani, P. (2023). Prediksi Cuaca Yang Akan Datang Menggunakan Metode Data Mining. NEWTON: Jurnal Matematika, Fisika, Algoritma dan Sains, 73-83.

Anggraini, Y., Indra, M., Khoirusofi, M., Azis, I. N., & Rosyani, P. (2023). Systematic Literature Review: Sistem Pakar Diagnosa Penyakit Gigi Menggunakan Metode Forward Chaining. BINER: Jurnal Ilmu Komputer, Teknik Dan Multimedia, 1-7.

Aqila, A., & Faisal, M. (2023). Lung Cancer EDA Classification Using the Decision Trees Method in Python. Informatics and Software Engineering, 8-13.

Artaningsih, E. Y., & Muhajir, A. (2023). Komparasi Algoritma Klasifikasi C4. 5 Dan C4. 5 Berbasis Particle Swarm Optimization Untuk Evaluasi Penentuan Kelayakan Pemberian Kredit Koperasi Di PT. Indah Kiat Pulp & Paper TBK. Scientia Sacra: Jurnal Sains, Teknologi dan Masyarakat, 29-48.

Doni, A., Fadli, A., Maulana, R. H., Putri, V. Y., & Rosyani, P. (2023). Analisis Metode Backward Chaining pada Sistem Pakar: Systematic Literature Review. JURIHUM: Jurnal Inovasi dan Humaniora, 10-16.

Idris, J. F., Ramadhani, R., & Mutoffar, M. M. (2024). KLASIFIKASI PENYAKIT KANKER PARU MENGGUNAKAN PERBANDINGAN ALGORITMA MACHINE LEARNING. Jurnal Media Akademik (JMA).

Krishna, S. U., Lakshman, A. N., Archana, T., Raja, K., & Ayyadurai, M. (2024). Lung Cancer Prediction and Classification Using Decision Tree and VGG16 Convolutional Neural Networks. The Open Biomedical Engineering Journal.

Lestari, A., Wijaya, H., Riyadi, N. S., & Rosyani, P. (2023). Systematic Literature Review: Sistem Pakar Diagnosis Penyakit Pada Manusia Menggunakan Metode Backward Channing. Buletin Ilmiah Ilmu Komputer dan Multimedia (BIIKMA), 71-77.

Perdana, W., Honi, R. A., Wibowo, B., & Rosyani, P. (2023). Studi Literature Review: Perbandingan Metode Klasifikasi Kecerdasan Buatan Pada Computer Vision. JURIHUM: Jurnal Inovasi dan Humaniora, 192-195.

Rofiani, R., Oktaviani, L., Vernanda, D., & Hendriawan, T. (2024). Penerapan Metode Klasifikasi Decision Tree dalam Prediksi Kanker Paru-Paru Menggunakan Algoritma C4. 5. Jurnal Tekno Kompak, 126-139.

Septhya, D., Rahayu, K., Rabbani, S., Fitria, V., Rahmaddeni, R., Irawan, Y., & Hayami, R. (203). Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru: Implementation of Decision Tree Algorithm and Support Vector Machine for Lung Cancer Classification. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 15-19.

Additional Files

Published

17-12-2024

How to Cite

Angga Rakhmansyah, & Perani Rosyani. (2024). Literature Review: Klasifikasi Penyakit Paru-paru Menggunakan Metode Decision Tree. OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(10), 2572–2577. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/4610

Most read articles by the same author(s)

<< < 1 2 3 4 5