Klasifikasi Spesies Burung Dengan Menggunakan Convolutional Neural Network
Keywords:
Deep Learning, Convolutional Neural Network, Bird Classification, Bird Species.Abstract
The use of the Convolutional Neural Network (CNN) model for the classification of bird species is the focus of this study. The methodology used in this study utilizes the BIRDS 400 - SPECIES IMAGE CLASSIFICATION dataset to be tested with the CNN InceptionV3 model and is limited to only 18 classes. The experiment was run on the free version of the Google Collabs platform. From the results of experiments conducted, the CNN InceptionV3 model requires time to train images for 36 minutes 46 seconds and obtains a training accuracy of 93.36%. For experiments at the testing stage, the CNN InceptionV3 model that has been trained on the Google Collabs platform can correctly predict all images in the testing folder. Based on the results of the research conducted, the CNN InceptionV3 model has very high accuracy for handling the dataset and the free version of the Google Collabs platform is sufficiently capable of processing the dataset.
References
Ayumi, V., Nurhaida, I., & Noprisson, H. (2022). Implementation of Convolutional Neural Networks for Batik Image Dataset. (IJCSAM) International Journal of Computing Science and Applied Mathematics, 8(1), 5–8.
Boom, B. J., Huang, P. X., He, J., & Fisher, R. B. (2012). Supporting ground-truth annotation of image datasets using clustering. Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 1542–1545.
Charli, F., Syaputra, H., Akbar, M., Sauda, S., & Panjaitan, F. (2020).
Implementasi Metode Faster Region Convolutional Neural Network (Faster R-CNN) Untuk Pengenalan Jenis Burung Lovebird. Journal of Information Technology Ampera, 1(3), 185–197.
Chollet, F. (2021). Deep learning with Python. Simon and Schuster. Christianto, E., Sambul, A. M., & Kambey, F. D. (2021). Implementation of
Convolutional Neural Network on Images for Starlings Classification.
Gerry. (2022). BIRDS 400 - SPECIES IMAGE CLASSIFICATION | Kaggle.
https://www.kaggle.com/datasets/gpiosenka/100-bird-species
Harjoseputro, Y., Yuda, I., & Danukusumo, K. P. (2020). MobileNets: Efficient convolutional neural network for identification of protected birds. IJASEIT (International Journal on Advanced Science, Engineering and Information Technology), 10(6), 2290–2296.
Hastomo, W. (2021). Diagnosa COVID-19 Chest X-Ray Dengan Convolution Neural Network Arsitektur Resnet-152. KERNEL: Jurnal Riset Inovasi Bidang Informatika Dan Pendidikan Informatika, 2(1), 26–33.
Herman, H., Cenggoro, T. W., Susanto, A., & Pardamean, B. (2021). Deep Learning for Oil Palm Fruit Ripeness Classification with DenseNet. 2021 International Conference on Information Management and Technology (ICIMTech), 1, 116–119.
Heryadi, Y., & Irwansyah, E. (2020). Deep Learning: Aplikasinya di Bidang Geospasial. AWI Technology Press.
Hesthaven, J. S., & Ubbiali, S. (2018). Non-intrusive reduced order modeling of nonlinear problems using neural networks. Journal of Computational Physics, 363, 55–78.
Hosny, K. M., Kassem, M. A., & Foaud, M. M. (2018). Skin cancer classification using deep learning and transfer learning. 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), 90–93.
Jayawardana, J. K. R., & Bandaranayake, T. S. (2021). ANALYSIS OF OPTIMIZING NEURAL NETWORKS AND ARTIFICIAL INTELLIGENT
MODELS FOR GUIDANCE, CONTROL, AND NAVIGATION SYSTEMS.
International Research Journal of Modernization in Engineering, Technology and Science, 3, 743–759.
Joly, A., Goëau, H., Glotin, H., Spampinato, C., Bonnet, P., Vellinga, W.-P., Planqué, R., Rauber, A., Palazzo, S., & Fisher, B. (2015). LifeCLEF 2015: multimedia life species identification challenges. International Conference of the Cross-Language Evaluation Forum for European Languages, 462–483.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25, 04015009. https://doi.org/10.1061/(ASCE)GT.1943-
0001284
Lambers, K. (2019). Learning to look at LiDAR: The use of R-CNN in the automated detection of archaeological objects in LiDAR data from the Netherlands. Journal of Computer Applications in Archaeology, 2(1), 31–40.
Lammie, C., Olsen, A., Carrick, T., & Azghadi, M. R. (2019). Low-Power and High-Speed Deep FPGA Inference Engines for Weed Classification at the Edge. IEEE Access, 7, 51171–51184.
Lauw, K. O., Santoso, L. W., & Intan, R. (2020). Identifikasi Jenis Anjing Berdasarkan Gambar Menggunakan Convolutional Neural Network Berbasis Android. Jurnal Infra, 8(2), 37–43.
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521. https://doi.org/10.1038/nature14539
Lee, C. Y., Gallagher, P. W., & Tu, Z. (2016). Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, 464–472.
Manohar, N., Kumar, Y. H., Rani, R., & Kumar, G. H. (2019). Convolutional neural network with SVM for classification of animal images. In Emerging Research in Electronics, Computer Science and Technology (pp. 527–537). Springer.
Meena, S. D., & Agilandeeswari, L. (2019). An efficient framework for animal breeds classification using semi-supervised learning and multi-part convolutional neural network (MP-CNN). IEEE Access, 7, 151783–151802.
Minar, M. R., & Naher, J. (2018). Recent Advances in Deep Learning: An Overview. ArXiv Preprint ArXiv:1807.08169, 2006, 1–31. https://doi.org/10.13140/RG.2.2.24831.10403
Mostafa, S., & Wu, F.-X. (2021). Diagnosis of autism spectrum disorder with convolutional autoencoder and structural MRI images. In Neural Engineering Techniques for Autism Spectrum Disorder (pp. 23–38). Elsevier.
Özgür, A., & Nar, F. (2020). Effect of dropout layer on classical regression problems. 2020 28th Signal Processing and Communications Applications Conference (SIU), 1–4.
Pardamean, B., Cenggoro, T. W., Rahutomo, R., Budiarto, A., & Karuppiah, E. K. (2018). Transfer Learning from Chest X-Ray Pre-trained Convolutional Neural Network for Learning Mammogram Data. Procedia Computer Science, 135, 400–407. https://doi.org/10.1016/j.procs.2018.08.190
Perdananto, A. (2019). Penerapan deep learning pada Aplikasi prediksi penyakit Pneumonia berbasis Convolutional Neural networks. Journal of ICT (Informatics and Communication Technology), 1(2), 1–10.
Priyono, F., & Indrajit, R. E. (2017). Perbandingan Teknik Klasifikasi Untuk Prediksi Status Kontrak Kerja Karyawan. Prosiding Semnastek.
Putra, I. (2016). Klasifikasi citra menggunakan convolutional neural network (CNN) pada caltech 101. Institut Teknologi Sepuluh Nopember.
Putro, E. C., Awangga, R. M., & Andarsyah, R. (2020). Tutorial Object Detection People with Faster region-Based Convolutional Neural Network (Faster R- CNN) (Vol. 1). Kreatif.
Rachmatullah, M. N., & Supriana, I. (2018). Low resolution image fish classification using convolutional neural network. 2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA), 78–83.
Rahman, A. Y. (2021). Klasifikasi Citra Burung Lovebird Menggunakan Decision Tree dengan Empat Jenis Evaluasi. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 688–696.
Rahman, A. Y. (2022). Klasifikasi Citra Burung Jalak Menggunakan Artificial Neural Network dan Random Forest. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 8(2), 255–268.
Rahutomo, R., Mahesworo, B., Wawan Cenggoro, T., Budiarto, A., Suparyanto, T., Bosco Surya Atmaja, D., Samoedro, B., & Pardamean, B. (2020). AI- Based Ripeness Grading for Oil Palm Fresh Fruit Bunch in Smart Crane Grabber. E&ES, 426(1), 12147.
Raj, S., Garyali, S., Kumar, S., & Shidnal, S. (2020). Image based bird species identification using convolutional neural network. International Journal of Engineering Research & Technology (IJERT), 9(6), 346.
Rathi, D., Jain, S., & Indu, S. (2017). Underwater fish species classification using convolutional neural network and deep learning. 2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR), 1–6.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018).
Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520.
Santos, C. F. G. dos, & Papa, J. P. (2022). Avoiding overfitting: A survey on regularization methods for convolutional neural networks. ACM Computing Surveys (CSUR).
Sari, D. F., & Swanjaya, D. (2020). Implementasi Convolutional Neural Network Untuk Identifikasi Penyakit Daun Gambas. Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 4(3), 137–142.
Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708
Sikumbang, W. N. (2021). Klasifikasi Burung Cendrawasih Menggunakan Recognition Cnn Keras. ILKOM Jurnal Ilmiah, 13(3).
Singh, S. A., Meitei, T. G., & Majumder, S. (2020). Short PCG classification based on deep learning. In Deep Learning Techniques for Biomedical and Health Informatics (pp. 141–164). Elsevier.
Syafrudin, S., Nugraha, R. A., Handayani, K., Linawati, S., & Gata, W. (2021).
Prediksi Status Pinjaman Bank dengan Deep Learning Neural Network.
Jurnal Teknik Komputer, 7(2), 130–135.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June, 1–9. https://doi.org/10.1109/CVPR.2015.7298594
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826.
Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture search for mobile.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2820–2828.
Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning, 6105–6114.
Valentino, F., Cenggoro, T. W., & Pardamean, B. (2021). A Design of Deep Learning Experimentation for Fruit Freshness Detection. IOP Conference Series: Earth and Environmental Science, 794(1), 12110.
Wulandari, I., Yasin, H., & Widiharih, T. (2020). Klasifikasi citra digital bumbu dan rempah dengan algoritma convolutional neural network (cnn). Jurnal Gaussian, 9(3), 273–282.
Xia, X., Xu, C., & Nan, B. (2017). Inception-v3 for flower classification. 2017 2nd International Conference on Image, Vision and Computing (ICIVC), 783– 787.
Yanuki, B., & Rahman, A. Y. (2021). Image Classification of Canaries Using Artificial Neural Network. 2021 5th International Conference on Informatics and Computational Sciences (ICICoS), 12–17.
Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8697–8710.
Zufar, M. (2016). Convolutional neural networks untuk pengenalan wajah secara real-time. Institut Technology Sepuluh Nopember.