IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK PADA PENYAKIT PNEUMONIA (STUDI KASUS : DINAS KESEHATAN KOTA TANGERANG SELATAN)
Keywords:
Pneumonia, Convolutional Neural Network, X-rayAbstract
To carry out the process of diagnosing pneumonia requires a fast and accurate process. The problem that occurs is that the diagnosis of pneumonia is still done manually. This causes a long time to wait for the availability of specialists, so technology is needed that can help pulmonary specialists to analyze early X-rays quickly and accurately with the use of computer-based information technology and data. It is hoped that this research will provide a solution to the problem and also help speed up the initial diagnosis using the CNN method. The CNN method was chosen because it has a high introduction to the deep learning process. In the CNN method there are various kinds of architectures that are generated through the experimental process that has been carried out by previous researchers. The problem that occurs is that the diagnosis of pneumonia is still done manually. This causes a long time to wait for the availability of specialists, so technology is needed that can help pulmonary specialists to analyze early X-rays quickly and accurately with the use of computer based information technology and data. This Pneumonia Detection System which is made using Python and uses the Convolutional Neural Network method can predict Pneumonia Disease using X-ray images with an Accuracy Rate of 91%, which can recommend to expert doctors and help the public recognize pneumonia.
References
Alodokter. (2022). Pneumonia. Retrieved March 14, 2022, from alodokter.com website: https://www.alodokter.com/pneumonia
Basyir, M. A. (2021). NETWORK DENGAN ARSITEKTUR EFFICIENNET-B4.
Fatta, H. Al. (2007). Analisis dan Perancangan Sistem Informasi untuk Keunggulan Bersaing Perusahaan dan Organisasi Modern. penerbit Andi.
Gusti Alfahmi. Desti Riminarsih. (2019). KLASIFIKASI CITRA GENUS PANTHERA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN).
Lutfia Afifah. (2022). Apa itu Confusion Matrix di Machine Learning? Retrieved from ilmudatapy website: https://ilmudatapy.com/apa-itu-confusion-matrix/
Maysanjaya, I. M. D. (2020). Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(2), 190–195. https://doi.org/10.22146/jnteti.v9i2.66
Menkes dr. Endang R. Sedyaningsih, MPH, D. P. (2009). Pneumonia, Penyebab Kematian Utama Balitale. Retrieved from kemkes.go.id website: https://www.kemkes.go.id/article/view/410/pneumonia-penyebab-kematian-utamabalita.html
Nofyat, Ibrahim, A., & Ambarita, A. (2018). Pengertian website. IJIS - Indonesian Journal On Information System, 3(1). https://doi.org/10.36549/ijis.v3i1.37
Permana, P. (2019). PERANCANGAN SISTEM INFORMASI PENJUALAN PERUMAHAN MENGUNAKAN METODE SDLC PADA PT. MANDIRI LAND PROSPEROUS BERBASIS MOBILE. Биохимия, 84(10), 1511–1518. https://doi.org/10.1134/s0320972519100129
Rasywir, E., Sinaga, R., & Pratama, Y. (2020). Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN). Paradigma - Jurnal Komputer Dan Informatika, 22(2), 117–123. https://doi.org/10.31294/p.v22i2.8907
Rohim, A., Sari, Y. A., & Tibyani. (2019). Convolution Neural Network (CNN) Untuk Pengklasifikasian Citra Makanan Tradisional.
Saha, S. (2018). A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way. Retrieved from Towards Data Science website: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
Siti Nuraeni. (2022). Memahami Pengertian Implementasi, Tujuan. Retrieved from katadata.co.id website: https://katadata.co.id/sitinuraeni/berita/6243accfd3afb/memahami-pengertian-implementasi-tujuan-faktor-dan-contohnya
Voaindonesia. (2016). Pneumonia Tidak Bisa Diremehkan. Retrieved from Voaindonesia website: https://www.voaindonesia.com/a/pneumonia-tidak-bisa-diremehkan/3527577.html
Yopento, J., & Coastera, F. F. (2022). IDENTIFIKASI PNEUMONIA PADA CITRA X-RAY PARU PARU MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK ( CNN ) BERDASARKAN EKSTRAKSI FITUR SOBEL. 10(1).