Implementasi Data Mining untuk Klasifikasi dan Pemerataan Guru pada Sekolah di Tangerang
Keywords:
Data Mining, Nearest Neighbor Algorithm, The Algorithm C4.5Abstract
Problems in education is the lack of teachers, the teachers are not in accordance with the educational background (mismatch), low qualifications, competence disparities and uneven distribution of teachers. This study aims to (1) design a model of classification algorithms equity needs of teachers by using nearest neighbor algorithm (2) To design a classification algorithm model distribution needs of teachers by using algorithm C4.5 (3) compare the accuracy of the model and algorithm nearest neighbor algorithm C4.5 equity requirement for teachers. This study aims to (1) design a model of classification algorithms of equity needs of teachers by using nearest neighbor algorithm (2) To design a classification algorithm models the distribution needs of teachers by using algorithm C4.5 (3) compare the accuracy of the models and nearest neighbor algorithm C4.5 algorithm equity requirement for teachers. The results of this study is the information in the form of pattern classification state whether teachers need more, or less enough of nearest neighbor algorithm and C4.5 algorithms. Nearest neighbor algorithm accuracy rate reaches 72% and the accuracy rate reaches 83%.
References
Petunjuk Teknis (Juknis) Pelaksanaan Peraturan Bersama Lima Menteri tentang penataan dan Pemerataan Guru PNS, November 2011.
Sanjaya, Wina. DR.M.Pd.2006. Pembelajaran Dalam Implementasi Kurikulum Berbasis Kompetensi. Jakarta: Kencana.
Kusrini, Emha T. Luthfi. “Algoritma Data Mining”. Penerbit ANDI, 2009
Budi Santosa, “Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis”. Penerbit 2007.
Ari Kurniawan, Mochamad Hariadi. “Klasterisasi kompetensi guru menggunakan hasil penilaian portofolio sertifikasi guru dengan metode data mining”. Jurnal Teknik Elektro (Telematika), Institut Teknologi Sepuluh Nopember Surabaya.
Priadi Surya. “Pemetaan Pendidikan (Education Mapping) Sebagai Dasar Meningkatkan Layanan Pendidikan”. Universitas Negeri Yogyakarta dimuat dalam Makalah ICEMAL (International Conference Educational Management, Administration and Leadership), 4-5 Juli 2012.
Hukmiah Arif. “Pemetaan Mutu Pendidik dan Tenaga Kependidikan Berbasis Spasial”. Tesis Program Pasca Sarjana Universitas Hasanuddin Makassar. 2011.
Ninki Hermaduanti, Sri Kusumadewi. “Sistem Pendukung Keputusan berbasis SMS untuk menentukan status gizi dengan metode k-nearest neighbor”. Fakultas Teknologi Industri Universitas Islam Indonesia.
Kusrini, Sri Hartati, Retantyo Wardoyo, Agus Harjoko “Perbandingan metode Nearest Neighbor dan algoritma C45 untuk menganalisis kemungkinan pengunduran diri calon mahasiswa di STMIK AMIKOM Yogyakarta”, Yogyakarta, Jurnal DASI Vol. 10 No. 1 Maret 2009, ISSN: 1411-3201.
Sunjana. “Klasifikasi Data Nasabah sebuah Asuransi menggunakan Algoritma C4.5”. SNATI 2010 Yogyakarta, 19 Juni 2010.
Maulani Kapiudin. “Data mining untuk klasifikasi pelanggan dengan Ant Colony Optimization”. Jurusan Teknik Informatika Fakultas Teknologi Industri Universitas Kristen Petra, yang dimuat pada paper informatika Petra.
Roger S. Pressman. “Rekayasa Perangkat Lunak Pendekatan Praktisi (buku satu)”. Penerbit Andi Yogyakarta. 2002.
Yuni Sugiarti. “Analisis dan Perancangan UML (Unified Modelling Language) Generated VB.6”. Penerbit Graha Ilmu Yogyakarta. 2013.












