PENERAPAN K-NEAREST NEIGHBORS PADA PERCEPTRON UNTUK KLASIFIKASI DATASET KECIL DENGAN TIGA FITUR
Keywords:
Single Layer Perceptron, K-Nearest Neighbor, Cross Validation, Small Dataset ClassificationAbstract
In developing machine learning models for small datasets, choosing the right method is key to producing accurate classification. This research applies the Single Layer Perceptron (SLP) algorithm to classify a small dataset with three main features, namely Feature1, Feature2, and Feature3. The SLP algorithm is used to learn patterns in the data, with model evaluation using the k-fold cross-validation technique. This technique ensures each piece of data is used as test and training data in turn, to obtain more accurate evaluation results. In addition, the k-Nearest Neighbor (k-NN) algorithm was used to find the optimal K parameter value to improve the accuracy of the model. This study used 13 sample data to train and test the model.
References
Purwandi, R. (2023). Penerapan Algoritma k-Nearest Neighbour (kNN) dalam Memprediksi Kelulusan Mahasiswa pada Konteks Praktikum di Laboratorium. Pros. Seminar Kecerdasan Artifisial, Sains Data, dan Pendidikan Masa Depan (PROKASDADIK), 1, 347. E-ISSN: 3063-5845.
Dewi, N. R., Desiani, A., Salamah, F., & Andriani, Y. (2023). ALGORITMA K-NEAREST NEIGHBOR (K-NN) DAN SINGLE LAYER PERCEPTRON (SLP) UNTUK KLASIFIKASI PENYAKIT ALZHEIMER. JTT (Jurnal Teknologi Terapan), 9(2), 92. https://doi.org/10.31884/jtt.v9i2.407
Riansa, D. A. (2016). Pengenalan tanda tangan menggunakan algoritma single layer perceptron (Sarjana thesis, Universitas Negeri Jakarta).
Shynk, J., & Bershad, N. (1991). Steady-state analysis of a single-layer perceptron based on a system identification model with bias terms. IEEE Transactions on Circuits and Systems, 38(9), 1030–1042. https://doi.org/10.1109/31.83874
Nabney, I. T. (2002). NetLab: Algorithms for Pattern Recognition. http://ci.nii.ac.jp/ncid/BA54676018
Shynk, J., & Bershad, N. (1991a). Steady-state analysis of a single-layer perceptron based on a system identification model with bias terms. IEEE Transactions on Circuits and Systems, 38(9), 1030–1042. https://doi.org/10.1109/31.83874