Literatur Review: Klasifikasi Penyakit Parkinson Menggunakan Algoritma Decision Tree

Authors

  • Rikha Lutfiati Universitas Pamulang
  • Yudha Dirgantara Universitas Pamulang
  • Fitri Anggraeni Universitas Pamulang
  • Siti Ayu Nurfadilah Universitas Pamulang
  • Perani Rosyani Universitas Pamulang

Keywords:

Parkinsons Disease, Algoritm Decision Tree

Abstract

Parkinson's disease is one of the neurodegenerative disorders that arises due to various risk factors, such as age, gender, and other contributing factors. Therefore, early detection of Parkinson's disease is crucial to prevent the condition from worsening. To develop an automated detection system for Parkinson's disease, a medical record dataset is required, consisting of frequency and amplitude data from the voice waves of several subjects. One of the main challenges in detecting Parkinson's disease is effectively analyzing this data. Additionally, a system that can quickly and automatically analyze clinical data is necessary. In response to this need, we propose the development of an automated system using the decision tree method to detect Parkinson's disease. This method can improve the system's performance in diagnosing whether an individual is affected by Parkinson's disease or not. The results of our proposed method show an accuracy of 90%, which is superior by 8%, 10%, 14.5%, and 20% compared to Naïve Bayes, SVM, K- NN, and other Decision Tree methods.

References

Brown, T. P., et al. (2006). Pesticides and Parkinson's Disease - Is There a Link? Environmental Health Perspectives, 114.

Erni, Affandi, & Laksono, M. S. (2023). Sistem Pakar Diagnosa Penyakit Kulit dengan Menggunakan Metode Forward Chaining. Jurnal Sisfotek Global, 10(2), 80.

Prasetya, A., Cahyani, A. D., Dewata, H. C., & Rosyani, P. (2022). Sistem Pakar Untuk Mendiagnosa Kerusakan Mata Akibat Softlens Menggunakan Metode Forward Chaining. Jurnal Teknologi Kesehatan, 1(02), 134–139.

Ghane, M., Ang, M. C., Nilashi, M., & Sorooshian, S. (2022). Enhanced decision tree induction using evolutionary techniques for Parkinson's disease classification. Biocybernetics and Biomedical Engineering, 42(3), 902-920.

Lee, S.-B., Kim, Y.-J., Hwang, S., Son, H., Lee, S. K., Park, K.-I., & Kim, Y.-G. (2022). Predicting Parkinson's disease using gradient boosting decision tree models with electroencephalography signals. Parkinsonism & Related Disorders, 95, 77-85.

Zhao, H., Cao, J., Wang, R., Lei, Y., Liao, W.-H., & Cao, H. (2021). Accurate identification of Parkinson’s disease by distinctive features and ensemble decision trees. Biomedical Signal Processing and Control, 69, 102860.

Parziale, A., Della Cioppa, A., Senatore, R., & Marcelli, A. (2019). A decision tree for automatic diagnosis of Parkinson’s disease from offline drawing samples: Experiments and findings. In Lecture Notes in Computer Science (pp. 196-206). Springer.

Krismer, F., Beliveau, V., Seppi, K., Mueller, C., Goebel, G., Gizewski, E. R., Wenning, G. K., Poewe, W., & Scherfler, C. (2020). Automated analysis of diffusion-weighted magnetic resonance imaging for the differential diagnosis of multiple system atrophy from Parkinson's disease. Movement Disorders.

Kadhim, M. N., Al-Shammary, D., & Suf, F. A novel voice classification based on Gower distance for Parkinson disease detection.

Soebiantoro, A. M., & Rosyani, P. (2023). Aplikasi Data Mining Pada Prediksi Cuaca Menggunakan Klasifikasi Naïve Bayes. NEWTON: Jurnal Matematika, Fisika, Algoritma Dan Sains, 1(1), 42–45.

Anggraeni, F., Kristiawan, N., Lutfiati, R., Dirgantara, Y., & Rosyani, P. (2023). Prediksi Cuaca Yang Akan Datang Menggunakan Metode Data Mining. NEWTON: Jurnal Matematika, Fisika, Algoritma Dan Sains, 1(1), 73–83.

Pangestu, D., Zakiyyah, N. N., Fauziah, N., Rahayu, Z., & Ikasari, H. I. (2024). Literature Review: Perbandingan Metode Klasifikasi Dalam Data Mining. JRIIN: Jurnal Riset Informatika Dan Inovasi, 1(11), 1131–1138

Fajri, M. I., Lubawi, A. D., Azzahra, D., Rivanda, F. J., & Rosyani, P. (2024). Literature Review Sistem Pakar Untuk Deteksi Dini Penyakit Diabetes Dengan Metode AI Decision Tree Dan Fuzzy Inference System. JRIIN: Jurnal Riset Informatika Dan Inovasi, 2(7), 1184–1188.

Rosyani, P., Saprudin, S., & Amalia, R. (2021). Klasifikasi Citra Menggunakan Metode Random Forest dan Sequential Minimal Optimization (SMO). Jurnal Sistem dan Teknologi Informasi (Justin).

Additional Files

Published

15-11-2024

How to Cite

Rikha Lutfiati, Yudha Dirgantara, Fitri Anggraeni, Siti Ayu Nurfadilah, & Perani Rosyani. (2024). Literatur Review: Klasifikasi Penyakit Parkinson Menggunakan Algoritma Decision Tree . OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(09), 2343–2349. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/4680