Klasifikasi Penyakit Bercak Daun Pada Tanaman Gandum Menggunakan Metode Convolutional Neural Network

Authors

  • Raihan Salman Al Parisy Universitas Pamulang
  • Damars Alfi Syahri Universitas Pamulang
  • Reyvalqy Universitas Pamulang
  • Chairina Fachrunnida Universitas Pamulang

Keywords:

Convolutional Neural Networks, Transformers, Segmentation, Wheat Leaf Disease Detection, CNN, Wheat Plants

Abstract

Wheat leaf diseases such as yellow rust and powdery mildew are very harmful to wheat yields worldwide. It is important to detect these diseases as early as possible so that losses can be minimized. In this work, we have used lightweight convolutional neural networks (CNNs) and Transformer-based methods to detect wheat leaf diseases under complex environmental conditions. In the first study, we tried several lightweight CNN models, such as MobileNetV3, ShuffleNetV2, GhostNet, MnasNet, and EfficientNetV2. These models were trained using different learning methods and achieved the highest accuracy of 98.65% using MnasNet and a fine-tuned learning rate. The second study focused on detecting yellow rust with UNET Segmentation and Swin Transformer classification methods. They achieved 95.8% accuracy in the field without manual intervention. These studies created a complete pipeline, including finding and delimiting wheat leaves from a complex background. They used YOLOv8 to quickly find leaves, then performed Segmentation and classification. The results showed that the combination of Segmentation, lightweight CNN, and Transformer techniques can handle leaf disease detection in nature with different backgrounds. This system has high accuracy and good efficiency for use in the field. This method can help the development of smart agricultural applications by accelerating and facilitating automatic detection of wheat leaf diseases. Using technologies such as Convolutional neural networks, Transformers, and Segmentation to overcome complex backgrounds.

References

Xiaojie Wen, Minghao Zeng, Jing Chen, Muzaipaer Maimaiti, Qi Liu. Recognition of Wheat Leaf Diseases Using Lightweight Convolutional Neural Networks against Complex Backgrounds. 2023.

Amna Hassan, Rafia Mumtaz, Zahid Mahmood, Muhammad Fayyaz, Muhammad Kashif Naeem. Wheat Leaf Localization and Segmentation for Yellow Rust Disease Detection in Complex Natural Backgrounds. Alexandria Engineering Journal, Vol. 107, 2024, pp. 786–798. DOI: 10.1016/j.aej.2024.09.018.

Fazha Regina Pramushela, Maulidiya Alifiany, Tiara Octavia, Asninda Sari, Perani Rosyani. Studi Kasus Penerapan Multi-Task Cascaded Convolutional Neural Network untuk Deteksi Banyak Wajah. Buletin Ilmiah Ilmu Komputer dan Multimedia (BIIKMA), Vol. 2, No. 1, Juni 2024, pp. 108-111. ISSN: 3024-8248.

Aditya Firmansyah, Ahmad Fauzul Itsnan, Ahmad Apip, Randy Tri Mulliya, Perani Rosyani. Sistem Absensi Mahasiswa Menggunakan Face Recognition dengan Algoritma CNN. Jurnal AI dan SPK: Jurnal Artificial Intelligence dan Sistem Penunjang Keputusan, Vol. 1, No. 4, Maret 2024, pp. 250-258. ISSN: 3025-0927.

Petchiammal A., Briskline Kiruba S., D. Murugan, Pandarasamy A. Paddy Doctor: A Visual Image Dataset for Automated Paddy Disease Classification and Benchmarking. In 6th Joint International Conference on Data Science & Management of Data (CODS-COMAD 2023), January 4–7, 2023, Mumbai, India, pp. 1-5. DOI: 10.1145/3570991.3570994.

Laksono, F. B., & Fathurohman, A. (2024). Deteksi penyakit tanaman dengan convolution neural network: Kombinasi arsitektur VGG16 dan ResNet34 untuk klasifikasi daun. Jurnal Komputer dan Teknologi Informasi, 2(2), 72–79.

Pratiwi, I. R., Najma, Nisrina, N., Ahdian, M. R., Pravitasari, A. A., & Hendrawati, T. (2022). Klasifikasi penyakit dan hama tanaman menggunakan Convolutional Neural Network (CNN). Prosiding Seminar Nasional Statistika XI, 178–190.

Additional Files

Published

20-12-2024

How to Cite

Raihan Salman Al Parisy, Damars Alfi Syahri, Reyvalqy, & Chairina Fachrunnida. (2024). Klasifikasi Penyakit Bercak Daun Pada Tanaman Gandum Menggunakan Metode Convolutional Neural Network. OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(11), 2645–2650. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/4674