LITERATURE REVIEW: PENERAPAN GRADIENT BOOSTING UNTUK KLASIFIKASI PENYAKIT DIABETES TIPE 2

Authors

  • Emison Wonda Universitas Pamulang
  • Mia Septiana Wambrauw Universitas Pamulang
  • Renaldi Ferrari Universitas Pamulang
  • Rizka Gifani Napitupulu Universitas Pamulang
  • Rosita Hermalinda Dwi Febrianti Universitas Pamulang

Keywords:

Diabetes Mellitus Type 2, Gradient Boosting, Xgboost, Lightgbm, Classification, Accuracy, Hyperparameter Tuning, Healthcare Management

Abstract

Diabetes mellitus type 2 is a metabolic condition with a rising global prevalence. Accurate classification is crucial for proper diagnosis and management. This research reviews the literature on the application of Gradient Boosting algorithms, particularly XGBoost and LightGBM, in classifying type 2 diabetes. The review indicates that Gradient Boosting algorithms have significant potential in improving the accuracy of disease diagnosis and risk prediction. Studies examined demonstrate the ability of these algorithms to handle complex data, achieve high accuracy rates, and address class imbalance issues. Moreover, parameter optimization such as hyperparameter tuning can significantly enhance model performance. This review highlights the benefits and potential of Gradient Boosting algorithms in enhancing healthcare systems through early detection and more effective management of type 2 diabetes.

References

Derara Duba Rufo, Taye Girma, Achim Ibenthal, & Worku Gachena Negara. (2021). Diagnosis of Diabetes Mellitus Using Gradient Boosting Machine (LightGBM). Diagnostics.

Fiska R. (2021). Teknik Pengumpulan Data dalam Rancangan Penelitian. statistik.

Ginanjar Abdurrahman, Hardian Oktavianto, Mukti Sintawati. (2022). Optimasi algoritma XGBoost Classifier dengan hyperparameter tuning. informatics journal.

Iqbal Fathur Rahman. (2020). Analisis data ekspresi gen skeletal muscle NGT, IGT, dan diabetes melitus tipe 2. jurnal iternasional sistem intelijen komputasi.

Jajang Jaya Purnama. (2020). Analisis Algoritma Klasifikasi Neural Network Untuk Diagnosis Penyakit Diabetes. IJCIT.

Aura Amalia Warzuqni, Divia Putri Sabilla, Zara Agustin, Perani Rosyani. (2022). Analisa Sistem Presensi Kelas Menggunakan Pengenal Wajah Dengan Metode Haar Cascase Classifier. MANEKIN.

Kartina Diah Kusuma W., Memen Akbar. (2022). Extreme Gradient Boosting (XGBoost): Membangun model prediksi risiko diabetes pada pasien. join.

Liu, Y., Wang, Y., & Zhang, J. (2019). A novel predictive model for diabetes based on gradient boosting decision tree. BMC Medical Informatics and Decision.

Nova Christina Sari, & Triana Linda Larasati. (2018). Komparasi Algoritma Naïve Bayes dan Gradient Boosting untuk Prediksi Pasien Diabetes. Jurnal Nasional Teknologi & Sistem Informasi.

Sahat Pandapotan Nainggolan, Ardiles Sinaga. (2023). COMPARATIVE ANALYSIS OF ACCURACY OF RANDOM FOREST AND GRADIENT BOOSTING CLASSIFIER ALGORITHM FOR DIABETES CLASSIFICATION. sebatik.

Erni, Affandi Agung Laksosno, Muchlas Syahlanisyiam, Perani Rosyani. (2023). Sistem Pakar Diagnosa Penyakit Kulit Dengan Menggunakan Metode Forward Chaining. MANEKIN.

Salma Irena Febriastia. (2024). KLASIFIKASI PENYAKIT DIABETES MELLITUS TIPE II BERBASIS MACHINE LEARNING MENGGUNAKAN LIGHTGBM. digital rpository unila.

Silvia Elsa Suryana, Budi Warsito, Suparti. (2021). PENERAPAN GRADIENT BOOSTING DENGAN HYPEROPT UNTUK . JURNAL GAUSSIAN.

Tianqi Chen, Carlos Guestrin. (2016). XGBoost: A Scalable Tree Boosting System. cornell university.

Anisa Maulida, Arisky Rahmatulloh, Irwan Ahussalim, Robby Alvian, Perani Rosyani. (2023). Analisis Metode Forward Chaining pada Sistem Pakar Systematic Literatur Review. MANEKIN.

Additional Files

Published

17-12-2024

How to Cite

Emison Wonda, Mia Septiana Wambrauw, Renaldi Ferrari, Rizka Gifani Napitupulu, & Rosita Hermalinda Dwi Febrianti. (2024). LITERATURE REVIEW: PENERAPAN GRADIENT BOOSTING UNTUK KLASIFIKASI PENYAKIT DIABETES TIPE 2 . OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(10), 2601–2607. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/4649