Tinjauan Komparatif Klasifikasi Penyakit Stroke Berdasarkan Fitur Medis Menggunakan Random Forest

Authors

  • Anggarini Puspita Rarasati Universitas Pamulang
  • Deytizsa Putri Nur Azizah Universitas Pamulang
  • Puput Arie Sugiyanto Universitas Pamulang
  • Arif Suryadin Universitas Pamulang

Keywords:

Stroke, Random Forest, Classification, Medical Features, Machine Learning

Abstract

Stroke is a leading cause of disability and mortality, requiring early prediction and diagnosis to improve patient care quality. One widely used algorithm in this classification is Random Forest, known for its advantages in processing complex data and yielding high accuracy. This study aims to conduct a comparative review of Random Forest applications for stroke classification based on medical features. A comparative analysis is performed across several scholarly journals to assess the algorithm’s effectiveness, accuracy, and performance under various parameter settings and data processing techniques. The results of this study are expected to provide insights into the different implementations of Random Forest in stroke classification and identify potential areas for further research to optimize this method. 

References

Sidik, A. D., & Ansawarman, A. (2022). Prediksi Jumlah Kendaraan Bermotor Menggunakan Machine Learning. Formosa Journal of Multidisciplinary Research, 1(3), 559–568. https://doi.org/10.55927/fjmr.v1i3.745

Fahrur Rozi, & Mochammad Bagoes Satria Junianto. (2023). Penerapan Machine Learning Untuk Prediksi Harga Saham PT.Telekomunikasi Indonesia Tbk Menggunakan Algoritma K-Nearest Neighbors. Jurnal Informatika Multi, 1(1), 18–24. Retrieved from https://jurnal.publikasitecno.id/index.php/multi/article/view/4

Anggraini, Y., Mohamad Indra, M. Khoirusofi, Ibnu Nur Azis, & Perani Rosyani. (2023). Systematic Literature Review: Sistem Pakar Diagnosa Penyakit Gigi Menggunakan Metode Forward Chaining. BINER : Jurnal Ilmu Komputer, Teknik Dan Multimedia, 1(1), 1–7. Retrieved from https://journal.mediapublikasi.id/index.php/Biner/article/view/2520

Fadli, M., & Saputra, R. A. (2023). Klasifikasi Dan Evaluasi Performa Model Random Forest Untuk Prediksi Stroke Classification And Evaluation Of Performance Models Random Forest For Stroke Prediction. 12(02), 72–80.)

Maulana Iqbal Baihaqi, Darmawati, Ari Syaripudin, Fajar Agung Nugroho. (2023). IMPLEMENTASI ALGORITMA RANDOM FOREST PADA PREDIKSI HARGA SAHAM BERDASARKAN DATA HISTORIS. Jubitek: JURNAL BIG DATA DAN TEKNOLOGI INFORMASI, 1(3), 42–51. Retrieved from http://jurnal.jcosbida.com/index.php/jubitek/article/view/244

S. Rahman, D. Siregar, R. B. Y. Syah, H. Setiawan, A. E. Maulana and Hamsiah, "The Effective Breast Cancer Classification with the Random Forest Algorithm," 2023 International Conference of Computer Science and Information Technology (ICOSNIKOM), Binjia, Indonesia, 2023, pp. 1-5, doi: 10.1109/ICoSNIKOM60230.2023.10364529.

Iskandar, N. A., Ernawati, I., & Widiastiwi, Y. (2022). Klasifikasi diagnosis penyakit stroke dengan menggunakan metode Random Forest. SENAMIKA: Seminar Nasional Mahasiswa Informatika UPN "Veteran" Jakarta, 3(2), 1–10. https://conference.upnvj.ac.id/index.php/senamika/article/view/2190

Fernández-Lozano, C., Hervella, P., MatoÿAbad, V., Rodríguez-Yáñez, M., SuárezÿGaraboa, S., & otros. (2021). Random forest-based prediction of stroke outcome. Random Forest-Based Prediction of Stroke Outcome, 11, 1–12.

Sari, W. J., Melyani, N. A., Arrazak, F., Anahar, M. A. B., Addini, E., Al-Sawaff, Z. H., & Manickam, S. (2024). Performance Comparison of Random Forest, Support Vector Machine and Neural Network in Health Classification of Stroke Patients, 2(1), 34–43 : https://journal.irpi.or.id/index.php/predatecs

Putri, M., & Erlin. (2024). Prediksi penyakit stroke menggunakan machine learning dengan algoritma Random Forest. Jurnal Infomedia: Teknik Informatika, Multimedia & Jaringan, 9(2), 1–10. https://e-jurnal.pnl.ac.id/infomedia/article/view/5199

Banjar, M., Irawati, I., Umar, F., & Hayati, L. (2022). Analysis of Stroke Classification Using Random Forest Method. ILKOM Jurnal Ilmiah, 14(3), 186-193. doi:https://doi.org/10.33096/ilkom.v14i3.1252.186-193

Dzaky Nafis Alfarizi, Agung Pangestu, R., Dimas Aditya, Muhammad Adi Setiawan, & Rosyani, P. (2023). Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis. AI Dan SPK : Jurnal Artificial Intelligent Dan Sistem Penunjang Keputusan, 1(1), 54–63. Retrieved from https://jurnalmahasiswa.com/index.php/aidanspk/article/view/144

Additional Files

Published

25-11-2024

How to Cite

Anggarini Puspita Rarasati, Deytizsa Putri Nur Azizah, Puput Arie Sugiyanto, & Arif Suryadin. (2024). Tinjauan Komparatif Klasifikasi Penyakit Stroke Berdasarkan Fitur Medis Menggunakan Random Forest. OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(09), 2416–2421. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/4604