Analisis Layanan Pelanggan PT PLN Berdasarkan Media Sosial Twitter Dengan Menggunakan Metode Naïve Bayes Classifier

Authors

  • Tri Prasetyo Prast Universitas Pamulang
  • Hadi Zakaria UNIVERSITAS PAMULANG
  • Pandu Wiliantoro UNIVERSITAS PAMULANG

Keywords:

Sentimen, Layanan, PT PLN, Twitter, Naïve Bayes Classifier

Abstract

Services for power and energy are currently still managed by a company from the State Electricity Company (PLN), which is one of the companies within the scope of State-Owned Enterprises (BUMN). Company PT. This PLN has the aim of serving the public interest and maintaining the quality and quality of power and energy itself. By being oriented to customer satisfaction, PT. PLN will always maintain quality so that the profits get bigger every time. Public opinion is divided into negative opinions containing public complaints, positive opinions containing community support, then neutral opinions containing reports or complaints from the public. The keywords used to capture public responses and opinions on PT PLN services in the web scraping process are using keywords, namely pln tangerang district", "pln tangerang city", "pln tangerang south", "pln banten. Based on research that has been done with sentiment analysis through the use of twitter based on tweets that have been carried out using the nave Bayes classifier method with more than 80% accuracy results.

References

Basu R, K. A. (2017). Harnessing Twitter Data for Analyzing Public Reactions to Transportation Policies. https://www.researchgate.net/publication/321997978_Harnessing_Twitter__Data_for_Analyzing_Public_Reactions_to_Transportation_Policies_Evidences_from_the_Odd-Even_Policy_in_Delhi_India.

Destuardi dan Surya, S. (2009). Klasifikasi Emosi Untuk Teks Bahasa Indonesia Menggunakan Metode Naive Bayes. Surabaya: Institut Teknologi Sepuluh November.

FZ., T. (2003). A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia.

Imelda A. Muis & Muhammad Affandes, M. (2015). Penerapan Metode Support Vector Machine (SVM) Menggunakan Kernel Radial Basis Function (RBF) Pada Klasifikasi Tweet Sains. Riau: Sains, Teknologi dan Industri UIN Sultan Syarif Kasim.

Kiprono, K. W. (2016). Comparative Twitter Sentiment Analysis Based on Linear and Probabilistic Models. International Journal on Data Science and Technology, 41-45.

Manning, C. R. (2009). An Introduction to Information Retrieval. Cambridge: Cambridge University Press.

Pramana S, Y. B. (2018). Data Mining dengan R Konsep Setara Implementasi. Bogor: IN MEDIA.

Ravi, V. a. (2015). A Survey on Opinion Mining and Sentiment Analysis: Task, Approaches and Applications. Elsevier Knowledge-Based Systems, 14-46.

Salsabila NA, W. Y. (2018). Colloquial Indonesian Lexicon. International Conference on Asian Language Processing, 236-9.

Telkom, U. (2021). 14.04.1010_bab1.pdf. Bandung: openlibrary.telkomuniversity.ac.id.

Additional Files

Published

30-06-2022

How to Cite

Prast, T. P., Hadi Zakaria, & Pandu Wiliantoro. (2022). Analisis Layanan Pelanggan PT PLN Berdasarkan Media Sosial Twitter Dengan Menggunakan Metode Naïve Bayes Classifier. OKTAL : Jurnal Ilmu Komputer Dan Sains, 1(06), 573–582. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/427

Most read articles by the same author(s)