Penerapan Data Mining Untuk Prediksi Penjualan Produk Terlaris Menggunakan Metode K-NEAREST NEIGHBOR (STUDI KASUS : RAKUNI BAKERY, PASTRY AND CAKE)

Authors

  • Sandy Aldy Pradana Universitas Pamulang
  • Mochamad Adhari Adiguna Universitas Pamulang

Keywords:

Data Mining, Method K-Nearest Neighbor, Best Selling Products Prediction

Abstract

n every shop, sales are very important so that the store can continue to operate and get income to be rolled back to buy materials or goods needed to be sold. Each store will compete through product quality and quality so that sales can continue to rise as expected. Store owners will usually use predictions on sales to find out how many products will be sold in the coming month. Data mining is a process that uses statistics, mathematics, artificial intelligence and machine learning to extract and identify useful information. Based on activity, data mining is collected into description, estimation, prediction, classification, clustering and association. The process in the data mining stage consists of three main steps, namely data preparation. In this step, data is selected, cleaned, and preprocessed following the guidelines and knowledge from domain experts who capture and integrate internal and external data into an overall organizational review. the information that has been generated after the data mining process must be displayed in a form that can be easily understood by the parties concerned. To predict sales of best-selling products, researchers use data mining calculations, which use classification techniques and the K-Nearest Neighbor algorithm, from the 10 products sold, the prediction results are obtained from RapidMiner Sales, which sell by Confusion Matrix testing, namely monitor burgers and chicken casio pao with accuracy values 85.00% and cross validation testing, namely monitoring burgers and girl pao dolls with an accuracy value of 87.00%.

References

Alfani P R, A. W., Rozi, F., Sukmana, F., Teknik Informatika, J., AKAKOM Yogyakarta Jl Raya Janti No, S., Teknologi Informasi, J., & Bhinneka PGRI Jl Mayor Sujadi Timur No, U. (n.d.). PREDIKSI PENJUALAN PRODUK UNILEVER MENGGUNAKAN METODE K-NEAREST NEIGHBOR.

Baharuddin, M. M., Azis, H., & Hasanuddin, T. (2019). ANALISIS PERFORMA METODE K-NEAREST NEIGHBOR UNTUK IDENTIFIKASI JENIS KACA. ILKOM Jurnal Ilmiah, 11(3), 269–274. https://doi.org/10.33096/ilkom.v11i3.489.269-274

Budiman1, D. F., Yuwono, E. C., & Yusuf, V. (n.d.). PERANCANGAN DESAIN KEMASAN PRODUK TOKO KUE KERING “DEWI” SEMARANG.

Ginanjar Mabrur, A., & Lubis, R. (2012). PENERAPAN DATA MINING UNTUK MEMPREDIKSI KRITERIA NASABAH KREDIT. In Jurnal Komputer dan Informatika (KOMPUTA) 53 Edisi. I.

Handoko, D., Tambunan, H. S., & Hardinata, J. T. (2021). Analisis Penjualan Produk Paket Kuota Internet Dengan Metode K-Nearest Neighbor. Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 6(1), 111. https://doi.org/10.30645/jurasik.v6i1.275

Harun, R., Chandra Pelangi, K., & Lasena, Y. (2020). PENERAPAN DATA MINING UNTUK MENENTUKAN POTENSI HUJAN HARIAN DENGAN MENGGUNAKAN ALGORITMA K NEAREST NEIGHBOR (KNN). In Jurnal Manajemen informatika & Sistem Informasi) (Vol. 3). Retrieved from Online website: http://e-journal.stmiklombok.ac.id/index.php/misi

Junaedi, I., Nuswantari, N., & Yasin, V. (n.d.). UNTUK DATA MINING ANALISIS TINGKAT RISIKO KEMATIAN NEONATUM

PADA BAYI. Retrieved from http://journal.stmikjayakarta.ac.id/index.php/jisicomTelp.+62-21-3905050,

Karsito, & Monika Sari, W. (2018). Prediksi Potensi Penjualan Produk Delifrance Dengan Metode Naive Bayes Di Pt. Pangan Lestari. Jurnal Teknologi Pelita Bangsa, 9(1), 67–78. Retrieved from https://jurnal.pelitabangsa.ac.id/index.php/sigma/article/view/465

Meliala, D. M., & Hasugian, P. (2020). Perbandingan Algoritma K-Nearest Neighbor Dengan Decision Tree Dalam Memprediksi Penjualan Makanan Hewan Peliharaan Di Petshop Dore Vet Clinic. Respati, 15(3), 35. https://doi.org/10.35842/jtir.v15i3.369

Nasution, T. (2020). Implementasi Algoritma K-Nearest Neighbor Untuk Penentuan Kelulusan Mahasiswa Tepat Waktu. Jurnal Perangkat Lunak, 2(1), 1–14. https://doi.org/10.32520/jupel.v2i1.944

Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253

Nofitri, R., & Irawati, N. (2019). ANALISIS DATA HASIL KEUNTUNGAN MENGGUNAKAN SOFTWARE RAPIDMINER. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 5(2), 199–204. https://doi.org/10.33330/jurteksi.v5i2.365

Puspita Hidayanti, W. (2020). Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada “Lombok Vape On.” Jurnal Informatika Dan Teknologi, 3(2).

Riyanto, U. (2018). ANALISIS PERBANDINGAN ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE DALAM MENGKLASIFIKASIKAN JUMLAH PEMBACA ARTIKEL ONLINE.

Tempola, F., Muhammad, M., & Khairan, A. (2018). PERBANDINGAN KLASIFIKASI ANTARA KNN DAN NAIVE BAYES PADA PENENTUAN STATUS GUNUNG BERAPI DENGAN K-FOLD CROSS VALIDATION COMPARISON OF CLASSIFICATION BETWEEN KNN AND NAIVE BAYES AT THE DETERMINATION OF THE VOLCANIC STATUS WITH K-FOLD

CROSS VALIDATION. 5(5), 577–584. https://doi.org/10.25126/jtiik20185983

Tumanggor, A., & Hasugian, S. (2021). Penerapan Data Mining Untuk Memprediksi Tingkat Kemampuan Anak Dalam Mengikuti Mata Pelajaran Dengan Metode C4.5 Pada SDN 105351 Bakaran Batu. Jurnal Nasional Komputasi Dan Teknologi Informasi, 4(1).

Additional Files

Published

05-06-2024

How to Cite

Sandy Aldy Pradana, & Mochamad Adhari Adiguna. (2024). Penerapan Data Mining Untuk Prediksi Penjualan Produk Terlaris Menggunakan Metode K-NEAREST NEIGHBOR (STUDI KASUS : RAKUNI BAKERY, PASTRY AND CAKE) . OKTAL : Jurnal Ilmu Komputer Dan Sains, 3(06), 1596–1610. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/3155

Most read articles by the same author(s)