REVIEW PENINGKATAN NILAI EFISIENSI SEL SURYA PEROVSKITE
Keywords:
Perovskite solar cells, Carbon, EfficiencyAbstract
Nama perovskite berasal dari Lev A. Perovskite yang adalah seorang ahli mineral Rusia, Dalam beberapa dekade terakhir.Sel surya perovskite (PSC) telah menarik perhatian besar dalam beberapa tahun terakhir karena peningkatan efisiensi yang cepat dan fabrikasi berbiaya rendah. Efisiensi mendekati 25% telah dicapai PSC pada tahun 2021 dengan perkembangan pesat yang belum pernah terjadi sebelumnya. Dengan peggabungan SnO2 sebagai ETL dengan penggunaan perovskite FAPbl3 dan MAPBr3 sebanyak 5 mol% sehingga dapat menghasilkan efisiensi sebesar 24,7% dengan peningkatan terbesar pada VOC dan faktor pengisian dayanya. Terlepas dari lompatan besar dalam efisiensi ini, perovskit masih diganggu oleh masalah seputar kinerja fotovoltaiknya. Sebagian besar PSC canggih bergantung pada penggunaan logam mulia emas (Au) atau perak (Ag) sebagai elektroda lawan (CE), sementara Au mahal, Ag sangat tidak stabil. CE memainkan peran penting dalam efisiensi dan stabilitas perangkat seluler dan memengaruhi biaya akhir perangkat atau modul. Tiga jenis bahan karbon termasuk karbon hitam, CNT dan graphene telah dipelajari sebagai karbon CE. Pasta karbon yang terutama mengandung karbon hitam adalah bahan CE yang paling banyak digunakan. Selain lapisan perovskit, HTL dan ETL, CE yang terbuat dari pasta karbon dioptimalkan secara detail seperti doping grafit dengan ukuran atau morfologi yang berbeda, rekayasa pelarut, inovasi metode pengendapan, dll. Hingga saat ini, efisiensi terbaik 17. 46% dicapai dari struktur konvensional dengan pasta karbon CE.
References
M. K. Assadi, S. Bakhoda, R. Saidur, and H. Hanaei, “Recent progress in perovskite solar cells,” Renew. Sustain. Energy Rev., vol. 81, no. May, pp. 2812–2822, 2018, doi: 10.1016/j.rser.2017.06.088.
L. E. Mundt et al., “Quantitative Local Loss Analysis of Blade-Coated Perovskite Solar Cells,” IEEE J. Photovoltaics, vol. 9, no. 2, pp. 452–459, 2019, doi: 10.1109/JPHOTOV.2018.2888835.
F. Zhang and K. Zhu, “Additive Engineering for Efficient and Stable Perovskite Solar Cells,” vol. 1902579, pp. 1–26, 2019, doi: 10.1002/aenm.201902579.
J. Chen, C. Dong, H. Idriss, O. F. Mohammed, and O. M. Bakr, “Metal Halide Perovskites for Solar-to-Chemical Fuel Conversion,” Adv. Energy Mater., vol. 10, no. 13, 2020, doi: 10.1002/aenm.201902433.
N. K. Elumalai, M. A. Mahmud, D. Wang, and A. Uddin, “Perovskite solar cells: Progress and advancements,” Energies, vol. 9, no. 11, 2016, doi: 10.3390/en9110861.
A. Manuscript, “Energy & Environmental Science,” pp. 0–22, 2019, doi: 10.1039/C9EE00751B.
R. Wei, “Modelling of Perovskite Solar Cells (Tesis de Maestría),” Thesis, p. 81, 2018.
L. Meng, J. You, and Y. Yang, “Addressing the stability issue of perovskite solar cells for commercial applications,” Nat. Commun., vol. 9, no. 1, pp. 1–4, 2018, doi: 10.1038/s41467-018-07255-1.
Q. Jiang et al., “Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%,” Adv. Mater., vol. 29, no. 46, pp. 1–7, 2017, doi: 10.1002/adma.201703852.
S. Il Seok, M. Grätzel, and N. G. Park, “Methodologies toward Highly Efficient Perovskite Solar Cells,” Small, vol. 14, no. 20, pp. 1–17, 2018, doi: 10.1002/smll.201704177.
J. Feng, X. Zhu, Z. Yang, X. Zhang, J. Niu, and Z. Wang, “Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy,” vol. 1801418, pp. 1–9, 2018, doi: 10.1002/adma.201801418.
Z. Chen et al., “Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency,” ACS Energy Lett., vol. 4, no. 6, pp. 1258–1259, 2019, doi: 10.1021/acsenergylett.9b00847.
S. Nair, S. B. Patel, and J. V. Gohel, “Recent trends in efficiency-stability improvement in perovskite solar cells,” Mater. Today Energy, vol. 17, p. 100449, 2020, doi: 10.1016/j.mtener.2020.100449.
M. Jeong et al., “Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss,” Science (80-. )., vol. 369, no. 6511, pp. 1615–1620, 2020, doi: 10.1126/science.abb7167.
W. Q. Wu et al., “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells,” Sci. Adv., vol. 5, no. 3, pp. 1–10, 2019, doi: 10.1126/sciadv.aav8925.
F. Matteocci et al., “Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Solar Modules,” ACS Appl. Mater. Interfaces, vol. 11, no. 28, pp. 25195–25204, 2019, doi: 10.1021/acsami.9b05730.
D. Wang et al., “Improvement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization,” J. Energy Chem., vol. 38, no. xxxx, pp. 207–213, 2019, doi: 10.1016/j.jechem.2019.03.023.
C. Li et al., “Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency,” J. Am. Chem. Soc., vol. 141, no. 15, pp. 6345–6351, 2019, doi: 10.1021/jacs.9b01305.
I. Yurestira, A. P. Aji, M. F. Desfri, A. S. Rini, and Y. Rati, “Potential of ZnO/ZnS as electron transport materials on Perovskite Solar Cells,” J. Aceh Phys. Soc., vol. 10, no. 2, pp. 41–47, 2021, doi: 10.24815/jacps.v10i2.18383.
N. G. Park, “Perovskite solar cells: An emerging photovoltaic technology,” Mater. Today, vol. 18, no. 2, pp. 65–72, 2015, doi: 10.1016/j.mattod.2014.07.007.
H. S. Jung, G. S. Han, N. Park, and M. J. Ko, “Flexible Perovskite Solar Cells,” Joule, vol. 3, no. 8, pp. 1850–1880, 2019, doi: 10.1016/j.joule.2019.07.023.
Y. Hou et al., “A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells,” vol. 5561, no. November, pp. 1–10, 2017.
P. Chen, Y. Bai, S. Wang, M. Lyu, J. H. Yun, and L. Wang, “In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells,” Adv. Funct. Mater., vol. 28, no. 17, pp. 1–10, 2018, doi: 10.1002/adfm.201706923.
J. Y. Kim, J. W. Lee, H. S. Jung, H. Shin, and N. G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev., vol. 120, no. 15, pp. 7867–7918, 2020, doi: 10.1021/acs.chemrev.0c00107.
F. Yusupandi, “Sayap Kupu-kupu Menginspirasi Lahirnya Sel Surya yang Lebih Efisien,” no. Cd, pp. 1–5, 2018.
Q. Meng et al., “Effect of temperature on the performance of perovskite solar cells,” J. Mater. Sci. Mater. Electron., vol. 32, no. 10, pp. 12784–12792, 2021, doi: 10.1007/s10854-020-03029-y.
I. Mesquita, L. Andrade, and A. Mendes, “Temperature Impact on Perovskite Solar Cells Under Operation,” ChemSusChem, vol. 12, no. 10, pp. 2186–2194, 2019, doi: 10.1002/cssc.201802899.
P. Roy, N. K. Sinha, and A. Khare, “An investigation on the impact of temperature variation over the performance of tin-based perovskite solar cell: A numerical simulation approach,” Mater. Today Proc., vol. 39, no. xxxx, pp. 2022–2026, 2019, doi: 10.1016/j.matpr.2020.09.281.
M. P. U. Haris, S. Kazim, and S. Ahmad, “Low-Temperature-Processed Perovskite Solar Cells Fabricated from Presynthesized CsFAPbI3Powder,” ACS Appl. Energy Mater., vol. 4, no. 3, pp. 2600–2606, 2021, doi: 10.1021/acsaem.0c03160.
Q. Luo et al., “All-Carbon-Electrode-Based Endurable Flexible Perovskite Solar Cells,” Adv. Funct. Mater., vol. 28, no. 11, pp. 1–8, 2018, doi: 10.1002/adfm.201706777.
L. Liang, Y. Cai, X. Li, M. K. Nazeeruddin, and P. Gao, “All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells,” Nano Energy, vol. 52, pp. 211–238, 2018, doi: 10.1016/j.nanoen.2018.07.049.
Z. Wu et al., “Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface,” Adv. Mater., vol. 31, no. 11, pp. 1–7, 2019, doi: 10.1002/adma.201804284.
L. Gao et al., “Several economical and eco-friendly bio-carbon electrodes for highly efficient perovskite solar cells,” Carbon N. Y., vol. 162, pp. 267–272, 2020, doi: 10.1016/j.carbon.2020.02.049.
G. H. Kim and D. S. Kim, “Development of perovskite solar cells with >25% conversion efficiency,” Joule, vol. 5, no. 5, pp. 1033–1035, 2021, doi: 10.1016/j.joule.2021.04.008.
M. Wu, M. Sun, H. Zhou, J. Y. Ma, and T. Ma, “Carbon Counter Electrodes in Dye-Sensitized and Perovskite Solar Cells,” Adv. Funct. Mater., vol. 30, no. 7, pp. 1–34, 2020, doi: 10.1002/adfm.201906451.
N. G. Park and K. Zhu, “Scalable fabrication and coating methods for perovskite solar cells and solar modules,” Nat. Rev. Mater., vol. 5, no. 5, pp. 333–350, 2020, doi: 10.1038/s41578-019-0176-2.
Y. K. Ren et al., “Temperature-assisted rapid nucleation: A facile method to optimize the film morphology for perovskite solar cells,” J. Mater. Chem. A, vol. 5, no. 38, pp. 20327–20333, 2017, doi: 10.1039/c7ta06334b.
J. F. Warman and D. Dahlan, “Sintesis Lapisan Titanium Dioxide dengan Doping Ganda Copper-Silver untuk Aplikasi Fotoanoda Dye Sensitized Solar Cell,” J. Fis. Unand, vol. 9, no. 3, pp. 415–420, 2020, doi: 10.25077/jfu.9.3.415-420.2020.
Z. Bi et al., “Defect tolerant perovskite solar cells from blade coated non-toxic solvents,” J. Mater. Chem. A, vol. 6, no. 39, pp. 19085–19093, 2018, doi: 10.1039/c8ta06771f.
T. Kim, J. Lim, and S. Song, “Recent progress and challenges of electron transport layers in organic⇓inorganic perovskite solar cells,” Energies, vol. 13, no. 21, pp. 1–16, 2020, doi: 10.3390/en13215572.
X. Lin et al., “Efficiency progress of inverted perovskite solar cells,” Energy Environ. Sci., vol. 13, no. 11, pp. 3823–3847, 2020, doi: 10.1039/d0ee02017f.
H. D. Pham, T. C. J. Yang, S. M. Jain, G. J. Wilson, and P. Sonar, “Development of Dopant-Free Organic Hole Transporting Materials for Perovskite Solar Cells,” Adv. Energy Mater., vol. 10, no. 13, 2020, doi: 10.1002/aenm.201903326.
Z. Yang et al., “Review on Practical Interface Engineering of Perovskite Solar Cells: From Efficiency to Stability,” Sol. RRL, vol. 4, no. 2, 2020, doi: 10.1002/solr.201900257.
J. J. Yoo et al., “Efficient perovskite solar cells via improved carrier management,” Nature, vol. 590, no. 7847, pp. 587–593, 2021, doi: 10.1038/s41586-021-03285-w.
C. Ma and N. G. Park, “A Realistic Methodology for 30% Efficient Perovskite Solar Cells,” Chem, vol. 6, no. 6, pp. 1254–1264, 2020, doi: 10.1016/j.chempr.2020.04.013.
Y. Makasudede, “Bab 2 tinjauan pustaka,” pp. 8–45, 1953.
E. Aktas et al., “Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p-i-n perovskite solar cells,” Energy Environ. Sci., vol. 14, no. 7, pp. 3976–3985, 2021, doi: 10.1039/d0ee03807e.
S. Castro-Hermosa et al., “Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer,” Nano Res., vol. 14, no. 4, pp. 1034–1042, 2021, doi: 10.1007/s12274-020-3147-4.