Otomatisasi Pengujian Aplikasi Scraping Profil Pengguna Facebook Menggunakan Selenium
Keywords:
IndonesiaAbstract
This research describes how to automate testing scraping applications to automatically retrieve Facebook user profile data. In the digital age, data is extremely valuable. Because data can be processed into new knowledge that can be used in all areas of life such as education, business and business. Facebook is a place where a lot of data is stored. Getting data from Facebook is not easy. I need a technique that my bot can use to crawl Facebook pages, retrieve user profile data, and group it by profile category. The technique is to create a bot out of Selenium. The stages of this research process are: Understand the HTML structure of Facebook pages to find patterns in Facebook profile data. A bot is then developed that can open the user's profile page, retrieve the profile data, and parse it against the patterns in her HTML structure on the Facebook page. Experimented on the web at a speed of 20 Mbit/s, the bot was able to retrieve the details of 100 Facebook user profiles of her in 20 minutes.
References
A. Yunistira, D. H. (2020). Analisis Penerapan model business intelligence pada Aplikasi payment point online banking dalam Meningkatkan Strategi Pemasaran (Studi Kasus: Aplikasi ApotikKuota). Jurnal Ilmu Komputer dan Agri-Informatika, 7(1), 1-10. doi:10.29244/jika.7.1.1-10
F. Firman, F. F. (2021). Aplikasi Pengingat Dan Pendataan Kenaikan Golongan Gaji Berbasis web Menggunakan Metode white box testing Dan black box testing. Jurnal Teknologi Informasi, 7(1), 50-57. doi:10.52643/jti.v7i1.1387
I. R. Bakti, Y. P. (2021). Rancang bangun sistem informasi geografis (Sig) lokasi praktek kerja industri (Prakerin) smk Methodist Medan berbasis web. Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, 6(1), 1-6. doi:10.36341/rabit.v6i1.1505
Jollyta, D. Z. (2020). Penerapan Metode left corner parsing Dan Analisis Kontekstual Pada natural language processing. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 7(1), 21-28. doi:10.35957/jatisi.v7i1.269
N. Izzah, N. Y. (2022). Sistem Deteksi Kemiripan Teks Pada Berita Berbahasa Indonesia Menggunakan algoritma Ratcliff/Obershelp. Jurnal Linguistik Komputasional (JLK), 5(1), 1. doi:10.26418/jlk.v5i1.65
R. Mande, K. C. (2018). Regular expression rule-based algorithm for multiple documents key information extraction. 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT). doi:10.1109/icssit.2018.8748764
Raghavendra, S. (2020). Introduction to selenium. Python Testing with Selenium, 1-14. doi:10.1007/978-1-4842-6249-8_1
S. Rizal, P. S. (2018). Penerapan ALGORITMA naive Bayes untuk PREDIKSI PENERIMAAN SISWA BARU Di SMK al-amien WONOREJO. Explore IT : Jurnal Keilmuan dan Aplikasi Teknik Informatika, 10(1), 14-21. doi:10.35891/explorit.v10i1.1671
W. Wahyono, A. N. (2018). Penerapan algoritma c4.5 untuk prediksi tingkat kompetensi karyawan pt multistrada arah sarana. Joutica, 3(1), 145. doi:10.30736/jti.v3i1.201
Wita, E. (2021). Penerapan natural language processing Untuk Mengidentifikasi Kalimat Ambigu pada Surat Kabar Menerapkan Metode shift reduce parsing. BEES: Bulletin of Electrical and Electronics Engineering, 2(2), 63-66. doi:10.47065/bees.v2i2.996