Analisa Algoritma C4.5 Terhadap Penentuan Rekomendasi Penerima Beasiswa

Authors

  • Wahyu Susanto Universitas Nusa Mandiri Jakarta
  • Astriana Mulyani Universitas Nusa Mandiri Jakarta

Abstract

Scholarships are financial assistance with the intention of being used as a means of continuing their education and are usually given by foundations, companies or government agencies. Scholarships are in the form of funds used to assist underprivileged students in continuing their duties in completing their education. Therefore, the granting of scholarships must be right on target to recipients who really deserve and deserve it. The large number of potential recipients makes the selection process take a long time. In this case, the use of data mining methods can be used as a solution to simplify the selection process. The C4.5 algorithm is the algorithm that will be used in this research. The data used are the names of students, class, parents' income, dependents of parents, and average grades of report cards. Data mining processing on a training data will produce a decision tree. The evaluation method carried out in this test obtained 90% accuracy value data, this can be evidence that the C4.5 algorithm is accurate enough to provide scholarship recommendations.

References

Ginantra, Darmawan Napitupulu, Edi Surya Negara, Muhammad Ridwan Lubis, Sarini Vita Dewi, C. P. (2020). Data Mining : Algoritma dan Implementasi. Yayasan Kita Menulis. https://www.google.co.id/books/edition/Data_Mining_Algoritma_dan_Implementasi/gAnfDwAAQBAJ?hl=id&gbpv=0

Aprilia C, D., Aji Baskoro, D., Ambarwati, L., & Wicaksana, I. W. S. (2013). Belajar Data Mining Dengan Rapid Minner. 139. https://www.academia.edu/7712860/Belajar_Data_Mining_dengan_RapidMiner

Etriyanti, E., Syamsuar, D., & Kunang, N. (2020). Implementasi Data Mining Menggunakan Algoritme Naive Bayes Classifier dan C4.5 untuk Memprediksi Kelulusan Mahasiswa. Telematika, 13(1), 56–67. https://doi.org/10.35671/telematika.v13i1.881

Hapsari, D. T., Harini, & Nugroho, J. A. (2018). Pengaruh Beasiswa PPA dan Kebiasaan Belajar Terhadap Prestasi Belajar Mahasiswa FKIP UNS Penerima Beasiswa PPA Periode Januari – Juni 2017. BISE: Jurnal Pendidikan Bisnis Dan Ekonomi, 4(1), 1–15.

Hendrian, S. (2018). Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan. Faktor Exacta, 11(3), 266–274. https://doi.org/10.30998/faktorexacta.v11i3.2777

Heni Sulistiani, Y. T. U. (2018). Penerapan Algoritma Klasifikasi Sebagai Pendukung Keputusan Pemberian Beasiswa Mahasiswa. Snti, 300–305.

Lailil Muflikhah, Dian Eka Ratnawati, R. R. M. (2018). Data Mining. Universitas Brawijaya Press. https://www.google.co.id/books/edition/Data_Mining/V_NqDwAAQBAJ?hl=id&gbpv=0

Prasetyowati, E. (2017). DATA MINING Pengelompokan Data untuk Informasi dan Evaluasi. Duta Media Publishing. https://www.google.co.id/books/edition/DATA_MINING_Pengelompokan_Data_untuk_Inf/rEH2DwAAQBAJ?hl=id&gbpv=0

Radar Banyumas. (2022). Tahun Ini Kuota Kartu Banyumas Pintar untuk SD Naik. Radarbanyumas.Co.Id. https://radarbanyumas.co.id/tahun-ini-kuota-kartu-banyumas-pintar-untuk-sd-naik/

Yunus, M., Ramadhan, H., Aji, D. R., & Yulianto, A. (2021). Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indonesia Pintar (KIP). Paradigma - Jurnal Komputer Dan Informatika, 23(2). https://doi.org/10.31294/p.v23i2.11395

Additional Files

Published

25-10-2022

How to Cite

Susanto, W., & Mulyani, A. . (2022). Analisa Algoritma C4.5 Terhadap Penentuan Rekomendasi Penerima Beasiswa . OKTAL : Jurnal Ilmu Komputer Dan Sains, 1(10), 1607–1619. Retrieved from https://journal.mediapublikasi.id/index.php/oktal/article/view/1034