Implementasi Dan Analisis Perbandingan Algoritma ID3 Dan C4.5 Dalam Pengukuran Kepuasan Konsumen

Authors

  • Kaslani STMIK IKMI Cirebon
  • Odi Nurdiawan STMIK IKMI Cirebon
  • Alvy Muhalim STMIK IKMI Cirebon

Keywords:

Algoritma ID3, Algoritma Decision Tree, Kepuasan Konsumen

Abstract

 − Excellent service in order to achieve the goal, to achieve this it is necessary to improve services to these consumers, because these services are still not measured effectively and the services are still not using a method, to assess the services provided to consumers. The main purpose of the consumer satisfaction survey is to calculate customer satisfaction on CV. Bintang Terang Sejahtera by providing questionnaires that have been filled out by consumers, this is to improve and measure the extent of consumer satisfaction. The results of the accuracy of the ID3 algorithm obtained are 99.13% with details, namely Prediction Results Satisfied and Turns True Satisfied with 164 Data, Prediction Results Satisfied and turns True Dissatisfied with 2 Data, Prediction Results Dissatisfied and Turns True Satisfied with 0 Data, Prediction results are not satisfied and it turns out to be true, dissatisfied with 63 data. The results of the accuracy of the algorithm obtained are 95.63% with details, namely the Prediction Results Satisfied and it turns out True Satisfied with 160 Data, Prediction Results Satisfied and turns out to be True Dissatisfied with 6 Data, Predictions Results Dissatisfied and turns True Satisfied with 4 Data, Results Prediction is not satisfied and turns out to be true, dissatisfied with 59 data. comparison of the results of the algorithm, it can be seen from the table that the ID3 algorithm is 99.13% and the Decision Tree Algorithm is 95.63%, meaning that the ID algorithm is better than the decision tree algorithm.

References

Han, J., Pei, J., & Kamber, M. (2022). Data Mining: Concepts and Techniques (4th ed.). Elsevier.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Safavian, S. R., & Landgrebe, D. (1991). A Survey of Decision Tree Classifier Methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–674.

Rokach, L., & Maimon, O. (2008). Data Mining with Decision Trees: Theory and Applications (2nd ed.). World Scientific Publishing

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data Mining: Practical Machine Learning Tools and Techniques (4th ed.). Morgan Kaufmann

Pratama, A., & Yuliana, R. (2021). Analisis Perbandingan Algoritma ID3 dan C4.5 dalam Klasifikasi Kepuasan Konsumen. Jurnal Teknologi Informasi dan Komputer, 9(1), 55–62.

Wijaya, H., & Nugroho, E. (2020). Pengukuran Kepuasan Pelanggan Menggunakan Decision Tree C4.5. Jurnal Sistem Informasi Bisnis, 12(2), 88–96

Susanti, R., & Arifin, A. (2019). Evaluasi Kinerja Algoritma ID3 dalam Klasifikasi Data Survey Kepuasan Mahasiswa. Jurnal Ilmiah Teknologi Informasi Terapan, 6(1), 30–35

Mitra, S., Pal, S. K., & Mitra, P. (2002). Data Mining in Soft Computing Framework: A Survey. IEEE Transactions on Neural Networks, 13(1), 3–14

Kotler, P., & Keller, K. L. (2016). Marketing Management (15th ed.). Pearson Education

Published

2024-03-31

How to Cite

Kaslani, Nurdiawan, O. ., & Muhalim, A. . (2024). Implementasi Dan Analisis Perbandingan Algoritma ID3 Dan C4.5 Dalam Pengukuran Kepuasan Konsumen. BULLET : Jurnal Multidisiplin Ilmu, 3(1), 168–171. Retrieved from https://journal.mediapublikasi.id/index.php/bullet/article/view/5185

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.