Literature Review : Implementasi Sistem Pakar Untuk Diagnosa Penyakit Diabetes Menggunakan Metode Fuzzy
Keywords:
Implementasi Sistem Pakar, Diagnosa Penyakit Diabetes, Metode FuzzyAbstract
This research is a literature review aimed at exploring the implementation of expert systems using fuzzy logic in the diagnosis process of diabetes. Diabetes is a primary concern in the field of healthcare due to its significant impact on human well-being. Through a literature review, this research conducted a search and analysis of various relevant sources and scientific articles to elucidate the application of expert systems with fuzzy logic in diagnosing diabetes. The findings of the literature review demonstrate that the implementation of expert systems using fuzzy logic has successfully yielded positive outcomes in supporting the diagnosis process of diabetes. This method enables the collection of patients' observed symptoms and medical information and applies predefined fuzzy rules to achieve accurate diagnoses. By continuously improving the implementation and development of more advanced expert systems, it is expected to discover more efficient and reliable solutions for diagnosing diabetes. The significant contribution of this research is expected to enhance the management of diabetes, improve the quality of life for patients, and mitigate the negative impact caused by this disease.
References
Bacin, S. (2021). Sistem Pakar Untuk Mendiagnosa Penyakit Diabetes Menggunakan Metode Inferensi Fuzzy Mamdani. Resolusi: Rekayasa Teknik Informatika dan Informasi, 1(3), 188-194.
Hidayat, H., Musthofa, K. N., Octavian, R., Firdaus, R., & Rosyani, P. (2022). Analisis Perbandingan Metode Logika Fuzzy Untuk Mendiagnosis Penyakit Diabetes Melitus. BISIK: Jurnal Ilmu Komputer, Hukum, Kesehatan dan Sosial Humaniora, 1(1), 40-45.
Khaliq, F. A., Ariestia, F. A., Arkansyah, I., Leksono, R. A. S., & Rosyani, P. (2022). Perbandingan Metode Fuzzy Mamdani, Sugeno dan Tsukamoto dalam Mendiagnosa Penyakit Diabetes Melitus. BISIK: Jurnal Ilmu Komputer, Hukum, Kesehatan dan Sosial Humaniora, 1(1), 62-66.
Rahmayani, A., Melania, A., Amara, F., & Rosyani, P. (2022). APLIKASI PEMILIHAN POWDER MINUMAN BERDASARKAN REFERENSI KONSUMEN MENGGUNAKAN FUZZY LOGIC. BISIK: Jurnal Ilmu Komputer, Hukum, Kesehatan dan Sosial Humaniora, 1(1), 51-61.
Rosyani, P., Suhendi, A., Apriyanti, D. H., & Waskita, A. A. (2021). Color Features Based Flower Image Segmentation Using K-Means and Fuzzy C-Means. Building of Informatics, Technology and Science (BITS), 3(3), 253-259.
Silmina, E. P., Hardiani, T., & Robi’in, B. (2020, April). Perancangan Sistem Pakar Diagnosis Penyakit Diabetes Melitus Gestasional Pada Ibu Hamil Menggunakan Fuzzy Mamdani. In Seri Prosiding Seminar Nasional Dinamika Informatika (Vol. 4, No. 1).
Sugiono, S., & Junior, A. (2022). Klasifikasi Sistem Pakar Untuk Mendiagnosa Penyakit Diabetes Menggunakan Metode Fuzzy Sugeno. Jurnal Pendidikan dan Konseling (JPDK), 4(5), 766-773.
Sundawa, E., Utami, M. N., Putra, A. S., Nur, M. I., & Rosyani, P. (2022). Analisis Perbandingan Metode Logika Fuzzy Untuk Menentukan Harga Penjualan/Pembelian Sepeda Motor. BISIK: Jurnal Ilmu Komputer, Hukum, Kesehatan dan Sosial Humaniora, 1(1), 46-50.
Tullah, R., Mustafa, S. M., & Rochim, A. (2019). Sistem Pakar Pendeteksi Penyakit Diabetes Mellitus Menggunakan Algoritma Fuzzy Logic Takagi Sugeno Kang. Jurnal Sisfotek Global, 9(2).
Wardana, H. K., Ummah, I., & Fitriyah, L. A. Sistem Pakar Fuzzy dengan Metode Sugeno Untuk Diagnosa Penyakit Diabetes Mellitus. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 19(2), 118-125.