Perkembangan Dalam Kelaikan Tabrak Superstruktur Bus: Dari Kepatuhan Regulasi Hingga Perlindungan Penumpang Holistik Pada Bus Konvensional Dan Listrik
Keywords:
Kelaikan Tabrak Bus, Desain Superstruktur, Pengujian Virtual, Keselamatan Penumpang, Struktur Kendaraan ListrikAbstract
Bus accidents continue to contribute significantly to global transportation fatality statistics, particularly in developing countries where human factors and infrastructure conditions play a major role. A comprehensive synthesis of bus superstructure crashworthiness technologies is presented by tracing their evolution from basic regulatory compliance toward the challenges of future technological adaptation. While the UN ECE R66 standard has established a well-defined framework for rollover protection, a review of the literature reveals a substantial gap in frontal impact standards, leading to the adoption of truck regulations (UN ECE R29) that are often incompatible with the flat-front geometry of buses. The discussion focuses on recent findings related to validated virtual testing methodologies, innovative structural reinforcement strategies such as seat-to-pillar integration, and the critical role of occupant restraint systems in mitigating secondary injuries. Furthermore, the transition toward electric buses is identified as introducing new challenges associated with high-voltage battery protection and the brittle failure characteristics of lightweight composite materials. It is concluded that future safety paradigms must evolve beyond merely preserving occupant survival space toward a holistic approach that integrates structural optimization, occupant biomechanics, and energy storage system protection.
References
Afripin, M. A. A., Zainudin, A. Z., Sahar, M. A. H. F. M., & Yusof, M. (2019). Frontal impact on bus superstructure as per UNECE R29 and NCAP. IOP Conference Series: Materials Science and Engineering, 670(1). https://doi.org/10.1088/1757-899X/670/1/012014
Elhussieny, S., Oraby, W., Elkady, M., Abdelhamid, A., & El-Demerdash, S. (2021). Optimisation of crash dynamics for bus cabin structure based on attained intrusion and deceleration during a frontal collision. International Journal of Crashworthiness, 26(5), 501–514. https://doi.org/10.1080/13588265.2020.1754648
Farahani, B. V., Ramos, N. V., Moreira, P. M. G. P., Cunha, R., Costa, A., Maia, R., & Rodrigues, R. M. (2021). Passive safety solutions on transit buses: Experimental and numerical analyses. Procedia Structural Integrity, 37(C), 668–675. https://doi.org/10.1016/j.prostr.2022.01.136
Gozali, M., Karmiadji, D. W., Libyawati, W., Haryanto, B., Masrur, M., Setyawan, A., Sulistiyo, W., Nuramin, M., Anwar, A., & Susilo, B. (2024). Experimental and Finite Element Study of Rollover Protection Structure for a 22-Seat Man Hauler Superstructure Vehicle. Automotive Experiences, 7(3), 389–405. https://doi.org/10.31603/ae.11380
Güler, M. A., Cerit, M. E., Mert, S. K., & Acar, E. (2020). Experimental and numerical study on the crashworthiness evaluation of an intercity coach under frontal impact conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(13), 3026–3041. https://doi.org/10.1177/0954407020927644
Guler, M. A., Elitok, K., Bayram, B., & Stelzmann, U. (2007). The influence of seat structure and passenger weight on the rollover crashworthiness of an intercity coach. International Journal of Crashworthiness, 12(6), 567–580. https://doi.org/10.1080/13588260701485297
Holenko, K., Dykha, O., Koda, E., Kernytskyy, I., Royko, Y., Horbay, O., Berezovetska, O., Rys, V., Humenuyk, R., Berezovetskyi, S., Żółtowski, M., Markiewicz, A., & Wierzbicki, T. (2024). Validation of Frontal Crashworthiness Simulation for Low-Entry Type Bus Body According to UNECE R29 Requirements. Applied Sciences (Switzerland), 14(13), 1–14. https://doi.org/10.3390/app14135595
Jongpradist, P., Saingam, N., Tangthamsathit, P., Chanpaibool, P., Sirichantra, J., & Aimmanee, S. (2022). Crashworthiness analysis and design of a sandwich composite electric bus structure under full frontal impact. Heliyon, 8(12), e11999. https://doi.org/10.1016/j.heliyon.2022.e11999
Jongpradist, P., Senawat, S., & Muangto, B. (2015). Improvement of Crashworthiness of Bus Structure under Frontal Impact. Advances in Structural Engineering and Mechanics (ASEM15), October, 1–11.
Kusumawati, N. R., & Widyaningsih, N. (2023). City Bus Inter-City and Inter-Provincial Traveller Safety Analysis in Jakarta until Solo Province. International Journal of Engineering Research and Advanced Technology, 09(10), 01–08. https://doi.org/10.31695/ijerat.2023.9.10.1
Lopes, R., Ramos, N. V., Cunha, R., Maia, R., Rodrigues, R., Parente, M. P. L., & Moreira, P. M. G. P. (2022). Passive Safety Solutions on Coach according ECE R29: Experimental and Numerical analyses. Procedia Structural Integrity, 42(2019), 1159–1168. https://doi.org/10.1016/j.prostr.2022.12.148
Lopes, R., Ramos, N. V., Cunha, R., Maia, R., Rodrigues, R., Parente, M. P. L., & Moreira, P. M. G. P. (2023). Coach crashworthiness and failure analysis during a frontal impact. Engineering Failure Analysis, 151(May), 1–21. https://doi.org/10.1016/j.engfailanal.2023.107369
Mihradi, S., Dhaniswara, A., Wicaksono, S., & Mahyuddin, A. I. (2022). Bus Superstructure Reinforcement for Safety Improvement against Rollover Accidents. Journal of Engineering and Technological Sciences, 54(2). https://doi.org/10.5614/j.eng.technol.sci.2022.54.2.6
Morka, A., Kwaśniewski, L., & Wekezer, J. (2005). Assessment of Passenger Security in Paratransit Buses. Journal of Public Transportation, 8(4), 47–63. https://doi.org/10.5038/2375-0901.8.4.4
Nævestad, T., Høye, A. K., Elvik, R., Hesjevoll, I., Brunstad, Ø. L., Milch, V., Blom, J., Laso, M., Pinchasik, D. R., Hesjevoll, I., Brunstad, Ø. L., Milch, V., Blom, J., Laso, M., Pinchasik, D. R., & Dale, T. (2025). Crashworthiness of buses improvements (Issue 0).
Phadatare, V. D., & Hujare, P. P. (2017). Performance Improvement of Bus Structure for Rollover Analysis Using FEA and Validation of Roll Bar. IOSR Journal of Mechanical and Civil Engineering, 17(10), 16–19. https://doi.org/10.9790/1684-17010041619
Phunpeng, V., Sumklang, S., Boransan, W., Horpibulsuk, S., Chinkulkijniwat, A., & Patongtalo, W. (2025). The Strength Analysis of Passenger-Bus Chassis Structure for Design Modification (Vol. 6, Issue 6, pp. 1–4). https://doi.org/10.2139/ssrn.5177786
Phunpeng, V., Sumklang, S., Boransan, W., Patongtalo, W., Horpibulsuk, S., & Chinkulkijniwat, A. (2025). Revolutionizing Passenger-Bus Safety: A Structural Redesign for Enhanced Crash Resilience. In The Lancent Pschch (Vol. 11, Issue August, pp. 133–143). https://doi.org/10.2139/ssrn.5325631
Purohit, P., Gurav, R., & Nalavade, S. (2023). Improving crash-worthiness and occupant safety of bus seat structures in frontal crashes as per AIS023 using Finite Element Analysis. Journal of Physics: Conference Series, 2601. https://doi.org/10.1088/1742-6596/2601/1/012039
Razali, N. I., Aziz, N. A., & Topa, A. (2025). Verification of the Computer Model of the Bus Rollover According To Annex 9 Unece R66. ASEAN Engineering Journal, 15(3), 143–150. https://doi.org/10.11113/aej.v15.22533
Safitri, D. M., Surjandari, I., & Jachrizal Sumabrata, R. (2020). Assessing factors affecting safety violations of bus rapid transit drivers in the Greater Jakarta Area. Safety Science, 125(March 2019). https://doi.org/10.1016/j.ssci.2020.104634
Seyedi, M. R., & Jung, S. (2020). Numerical assessment of occupant responses during the bus rollover test: A finite element parametric study. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(8), 2195–2215. https://doi.org/10.1177/0954407019894425
Spirk, S., & Kepka, M. (2015). Tests and Simulations for Assessment of Electric Buses Passive Safety. Procedia Engineering, 114, 338–345. https://doi.org/10.1016/j.proeng.2015.08.077
Syahliantina, A., Suhardi, B., & Dewi, R. S. (2025). Investigation of Factors Influencing Bus Accidents: A Framework for Enhancing Transportation Safety Mitigation. International Journal on Advanced Science, Engineering and Information Technology, 15(4), 1171–1181. https://doi.org/10.18517/ijaseit.15.4.20787
Václavík, J., Dopierala, L., & Chvojan, J. (2024). Investigations of the Hybrid Beam Behavior during the Three-point Bending Test. Procedia Structural Integrity, 54(2023), 294–299. https://doi.org/10.1016/j.prostr.2024.01.086
Woodrooffe, J., & Blower, D. (2015). Heavy Truck Crash Analysis and Countermeasures to Improve Occupant Safety. SAE Technical Papers, 2015-Septe(May). https://doi.org/10.4271/2015-01-2868
Afripin, M. A. A., Zainudin, A. Z., Sahar, M. A. H. F. M., & Yusof, M. (2019). Frontal impact on bus superstructure as per UNECE R29 and NCAP. IOP Conference Series: Materials Science and Engineering, 670(1). https://doi.org/10.1088/1757-899X/670/1/012014
Elhussieny, S., Oraby, W., Elkady, M., Abdelhamid, A., & El-Demerdash, S. (2021). Optimisation of crash dynamics for bus cabin structure based on attained intrusion and deceleration during a frontal collision. International Journal of Crashworthiness, 26(5), 501–514. https://doi.org/10.1080/13588265.2020.1754648
Farahani, B. V., Ramos, N. V., Moreira, P. M. G. P., Cunha, R., Costa, A., Maia, R., & Rodrigues, R. M. (2021). Passive safety solutions on transit buses: Experimental and numerical analyses. Procedia Structural Integrity, 37(C), 668–675. https://doi.org/10.1016/j.prostr.2022.01.136
Gozali, M., Karmiadji, D. W., Libyawati, W., Haryanto, B., Masrur, M., Setyawan, A., Sulistiyo, W., Nuramin, M., Anwar, A., & Susilo, B. (2024). Experimental and Finite Element Study of Rollover Protection Structure for a 22-Seat Man Hauler Superstructure Vehicle. Automotive Experiences, 7(3), 389–405. https://doi.org/10.31603/ae.11380
Güler, M. A., Cerit, M. E., Mert, S. K., & Acar, E. (2020). Experimental and numerical study on the crashworthiness evaluation of an intercity coach under frontal impact conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(13), 3026–3041. https://doi.org/10.1177/0954407020927644
Guler, M. A., Elitok, K., Bayram, B., & Stelzmann, U. (2007). The influence of seat structure and passenger weight on the rollover crashworthiness of an intercity coach. International Journal of Crashworthiness, 12(6), 567–580. https://doi.org/10.1080/13588260701485297
Holenko, K., Dykha, O., Koda, E., Kernytskyy, I., Royko, Y., Horbay, O., Berezovetska, O., Rys, V., Humenuyk, R., Berezovetskyi, S., Żółtowski, M., Markiewicz, A., & Wierzbicki, T. (2024). Validation of Frontal Crashworthiness Simulation for Low-Entry Type Bus Body According to UNECE R29 Requirements. Applied Sciences (Switzerland), 14(13), 1–14. https://doi.org/10.3390/app14135595
Jongpradist, P., Saingam, N., Tangthamsathit, P., Chanpaibool, P., Sirichantra, J., & Aimmanee, S. (2022). Crashworthiness analysis and design of a sandwich composite electric bus structure under full frontal impact. Heliyon, 8(12), e11999. https://doi.org/10.1016/j.heliyon.2022.e11999
Jongpradist, P., Senawat, S., & Muangto, B. (2015). Improvement of Crashworthiness of Bus Structure under Frontal Impact. Advances in Structural Engineering and Mechanics (ASEM15), October, 1–11.
Kusumawati, N. R., & Widyaningsih, N. (2023). City Bus Inter-City and Inter-Provincial Traveller Safety Analysis in Jakarta until Solo Province. International Journal of Engineering Research and Advanced Technology, 09(10), 01–08. https://doi.org/10.31695/ijerat.2023.9.10.1
Lopes, R., Ramos, N. V., Cunha, R., Maia, R., Rodrigues, R., Parente, M. P. L., & Moreira, P. M. G. P. (2022). Passive Safety Solutions on Coach according ECE R29: Experimental and Numerical analyses. Procedia Structural Integrity, 42(2019), 1159–1168. https://doi.org/10.1016/j.prostr.2022.12.148
Lopes, R., Ramos, N. V., Cunha, R., Maia, R., Rodrigues, R., Parente, M. P. L., & Moreira, P. M. G. P. (2023). Coach crashworthiness and failure analysis during a frontal impact. Engineering Failure Analysis, 151(May), 1–21. https://doi.org/10.1016/j.engfailanal.2023.107369
Mihradi, S., Dhaniswara, A., Wicaksono, S., & Mahyuddin, A. I. (2022). Bus Superstructure Reinforcement for Safety Improvement against Rollover Accidents. Journal of Engineering and Technological Sciences, 54(2). https://doi.org/10.5614/j.eng.technol.sci.2022.54.2.6
Morka, A., Kwaśniewski, L., & Wekezer, J. (2005). Assessment of Passenger Security in Paratransit Buses. Journal of Public Transportation, 8(4), 47–63. https://doi.org/10.5038/2375-0901.8.4.4
Nævestad, T., Høye, A. K., Elvik, R., Hesjevoll, I., Brunstad, Ø. L., Milch, V., Blom, J., Laso, M., Pinchasik, D. R., Hesjevoll, I., Brunstad, Ø. L., Milch, V., Blom, J., Laso, M., Pinchasik, D. R., & Dale, T. (2025). Crashworthiness of buses improvements (Issue 0).
Phadatare, V. D., & Hujare, P. P. (2017). Performance Improvement of Bus Structure for Rollover Analysis Using FEA and Validation of Roll Bar. IOSR Journal of Mechanical and Civil Engineering, 17(10), 16–19. https://doi.org/10.9790/1684-17010041619
Phunpeng, V., Sumklang, S., Boransan, W., Horpibulsuk, S., Chinkulkijniwat, A., & Patongtalo, W. (2025). The Strength Analysis of Passenger-Bus Chassis Structure for Design Modification (Vol. 6, Issue 6, pp. 1–4). https://doi.org/10.2139/ssrn.5177786
Phunpeng, V., Sumklang, S., Boransan, W., Patongtalo, W., Horpibulsuk, S., & Chinkulkijniwat, A. (2025). Revolutionizing Passenger-Bus Safety: A Structural Redesign for Enhanced Crash Resilience. In The Lancent Pschch (Vol. 11, Issue August, pp. 133–143). https://doi.org/10.2139/ssrn.5325631
Purohit, P., Gurav, R., & Nalavade, S. (2023). Improving crash-worthiness and occupant safety of bus seat structures in frontal crashes as per AIS023 using Finite Element Analysis. Journal of Physics: Conference Series, 2601. https://doi.org/10.1088/1742-6596/2601/1/012039
Razali, N. I., Aziz, N. A., & Topa, A. (2025). Verification of the Computer Model of the Bus Rollover According To Annex 9 Unece R66. ASEAN Engineering Journal, 15(3), 143–150. https://doi.org/10.11113/aej.v15.22533
Safitri, D. M., Surjandari, I., & Jachrizal Sumabrata, R. (2020). Assessing factors affecting safety violations of bus rapid transit drivers in the Greater Jakarta Area. Safety Science, 125(March 2019). https://doi.org/10.1016/j.ssci.2020.104634
Seyedi, M. R., & Jung, S. (2020). Numerical assessment of occupant responses during the bus rollover test: A finite element parametric study. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(8), 2195–2215. https://doi.org/10.1177/0954407019894425
Spirk, S., & Kepka, M. (2015). Tests and Simulations for Assessment of Electric Buses Passive Safety. Procedia Engineering, 114, 338–345. https://doi.org/10.1016/j.proeng.2015.08.077
Syahliantina, A., Suhardi, B., & Dewi, R. S. (2025). Investigation of Factors Influencing Bus Accidents: A Framework for Enhancing Transportation Safety Mitigation. International Journal on Advanced Science, Engineering and Information Technology, 15(4), 1171–1181. https://doi.org/10.18517/ijaseit.15.4.20787
Václavík, J., Dopierala, L., & Chvojan, J. (2024). Investigations of the Hybrid Beam Behavior during the Three-point Bending Test. Procedia Structural Integrity, 54(2023), 294–299. https://doi.org/10.1016/j.prostr.2024.01.086
Woodrooffe, J., & Blower, D. (2015). Heavy Truck Crash Analysis and Countermeasures to Improve Occupant Safety. SAE Technical Papers, 2015-Septe(May). https://doi.org/10.4271/2015-01-2868











