Studi Eksperimen Regenerative Shock Absorber Dan Implementasi Pada Model Half Car

Authors

  • Elfrida Rizky Riadini Politeknik Negeri Semarang
  • Avicenna An Nizhami Politeknik Negeri Semarang

Keywords:

Regenerative Shock Absorber, Energi Getaran, Model Half Car, Koefisien Redaman, Pemanen Energi

Abstract

This study investigates the potential of utilizing vehicle vibrations as an energy source through a regenerative shock absorber (RSA) system based on a rack-pinion mechanism and electromagnetic generator. The research comprises two main stages: experimental testing of the RSA and its implementation into a numerical half-car suspension model. Experimental data were used to establish the relationship between translational velocity, damping force, voltage, and current. The average damping coefficient obtained was 827.33 Ns/m and was applied in simulations. The results indicate that the highest voltage and current outputs occur at a speed of 90 km/h, which corresponds to the largest suspension deflection amplitude. Simulation outcomes also demonstrate that the RSA effectively functions as both a vibration damper and an energy harvester. This study confirms the dual-functionality of RSA systems in improving ride comfort while simultaneously converting mechanical energy into electrical energy.

References

Abdelkareem, M. A. A., Xu, L., Ali, M. K. A., Elagouz, A., Mi, J., Guo, S., Liu, Y., & Zuo, L. (2018). Vibration energy harvesting in automotive suspension system: A detailed review. In Applied Energy (Vol. 229, pp. 672–699). Elsevier Ltd. https://doi.org/10.1016/j.apenergy.2018.08.030

Ahmed, M. M., & Svaricek, F. (2014). Preview optimal control of vehicle semi-active suspension based on partitioning of chassis acceleration and tire load spectra. 2014 European Control Conference, ECC 2014, 1669–1674. https://doi.org/10.1109/ECC.2014.6862615

Ali, M. K. A., Xianjun, H., Abdelkareem, M. A. A., Gulzar, M., & Elsheikh, A. H. (2018). Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines. Tribology International, 124, 209–229. https://doi.org/10.1016/J.TRIBOINT.2018.04.004

Andronic, F., Mihai, I., Manolache-Rusu, I.-C., Ptuleanu, L., & Radion, I. (2014). SIMULATING PASSIVE SUSPENSION ON AN UNEVEN TRACK SURFACE. Journal of Engineering Studies and Research, 20(1).

Bing Kong, Tao Li Huey, Hoon Hng, Freddy Boey, Tianshu Zhang, Sean Li, L. (2014). Lecture Notes in Energy 24 Waste Energy Harvesting Mechanical and Thermal Energies. In Energy Technology (Vol. 24, Issue 1). http://www.springer.com/series/8874

Ekoru, J. E. D., & Pedro, J. O. (2013). Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems. Journal of Zhejiang University: Science A, 14(6), 401–416. https://doi.org/10.1631/jzus.A1200161

Emura, J., Kakizaki, S., Yamaoka, F., & Nakamura, M. (1994). Development of the Semi-Active Suspension System Based on the Sky-Hook Damper Theory. SAE Transactions, 103, 1110–1119. http://www.jstor.org/stable/44611825

Galluzzi, R., Xu, Y., Amati, N., & Tonoli, A. (2018). Optimized design and characterization of motor-pump unit for energy-regenerative shock absorbers. Applied Energy, 210, 16–27. https://doi.org/10.1016/j.apenergy.2017.10.100

Guo, S., Liu, Y., Xu, L., Guo, X., & Zuo, L. (2016). Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles. Vehicle System Dynamics, 54(7), 918–942. https://doi.org/10.1080/00423114.2016.1174276

Hassaan, G. A. (2014). Car Dynamics using Quarter Model and Passive Suspension, Part I: Effect of Suspension Damping and Car Speed. International Journal of Computer Techniques, 1. http://www.ijctjournal.org

Hendrowati, W., Guntur, H. L., & Sutantra, I. N. (2012). Design, Modeling and Analysis of Implementing a Multilayer Piezoelectric Vibration Energy Harvesting Mechanism in the Vehicle Suspension. Engineering, 04(11), 728–738. https://doi.org/10.4236/eng.2012.411094

Hrovatt, D. (1997). Survey of Advanced SuspensionDevelopments and Related Optimal Control Applications*. Automatica, 33(10), 1781–1817.

Pugi, L., Pagliai, M., Nocentini, A., Lutzemberger, G., & Pretto, A. (2017). Design of a hydraulic servo-actuation fed by a regenerative braking system. Applied Energy, 187, 96–115. https://doi.org/10.1016/j.apenergy.2016.11.047

Shin, S. S., Kim, B. S., Lee, D. W., & Kwon, S. J. (2017). Vehicle dynamic analysis for the ball-screw type energy harvesting damper system. Lecture Notes in Electrical Engineering, 415 LNEE, 853–862. https://doi.org/10.1007/978-3-319-50904-4_86

Zhao, D. (2013). Waste thermal energy harvesting from a convection-driven Rijke–Zhao thermo-acoustic-piezo system. Energy Conversion and Management, 66, 87–97. https://doi.org/10.1016/J.ENCONMAN.2012.09.025

Zuo, L., & Zhang, P. S. (2013). Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions. Journal of Vibration and Acoustics, Transactions of the ASME, 135(1). https://doi.org/10.1115/1.4007562

Published

2025-01-31

How to Cite

Rizky Riadini, E., & An Nizhami, A. . (2025). Studi Eksperimen Regenerative Shock Absorber Dan Implementasi Pada Model Half Car. BULLET : Jurnal Multidisiplin Ilmu, 3(6), 872–883. Retrieved from https://journal.mediapublikasi.id/index.php/bullet/article/view/5273

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.