AI-Driven Patient Outcome Prediction: Balancing Innovation And Ethics In Healthcare

Authors

  • Rasmila Lama Lamar University
  • Sen Sen Oo Southeast Missouri State University
  • Birbal Tamang Lamar University
  • Jinnat Ara Trine University
  • Md Nazmul Islam Lamar University

Keywords:

Artificial Intelligence, Healthcare, Data Privacy, Data Security, Ethics

Abstract

Predictive analytics in healthcare has gained significant attention due to its ability to enhance decision-making, reduce hospital readmission rates, and improve patient outcomes. Machine learning (ML) plays a pivotal role in developing predictive models that analyze vast amounts of patient data to forecast health outcomes. This paper explores the application of ML techniques in healthcare predictive analytics, discusses commonly used algorithms, evaluates their effectiveness, and highlights challenges and future research directions. The integration of machine learning (ML) in predictive analytics enables the processing and analysis of vast amounts of patient data to identify patterns and predict health outcomes. This paper explores the application of ML techniques in healthcare predictive analytics, discusses commonly used algorithms, evaluates their effectiveness, and highlights challenges and future research directions. We present a case study using supervised learning models to predict patient readmission rates and compare their accuracy based on real-world healthcare datasets. The findings indicate that ML-driven predictive analytics can significantly enhance healthcare efficiency, reduce costs, and improve patient care through early intervention and risk mitigation strategies.

References

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. New England Journal of Medicine, 380(14), 1347-1358.

Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246.

Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. New England Journal of Medicine, 375(13), 1216-1219.

Topol, E. (2019). High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nature Medicine, 25(1), 44-56.

Pagua U. Robot laws: Crimes, contracts and responsibilities. Mizan Legal Foundation; 2019. p. 288.

Hekmatnia M, Mohammadi M, Vaseghi M. Civil Liability for dam- ages caused by robots based on autonomous artificial intelli- gence. Islam Law J. 2019;16(60):231-58

Jim, M. M. I., Hasan, M., Sultana, R., & Rahman, M. M. (2024). Machine Learning Techniques for Automated Query Optimization in Relational Databases. International Journal of Advanced Engineering Technologies and Innovations, 1(3), 514-529.

Valli, L. N., Sujatha, N., Mech, M., & Lokesh, V. S. (2024). Accelerate IT and IoT with AIOps and observability. In E3S Web of Conferences (Vol. 491, p. 04021). EDP Sciences.

Imam, H., Hossain, M. J., Momotaj, F. N. U., & Moniruzzaman, M. Modern Healthcare Technologies: Legal and Ethical Concerns of Artificial Intelligence. International Journal of Multidisciplinary Sciences and Arts, 3(4), 181-192.

De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. (2018) 24:1342–50. doi: 10.1038/s41591-018-0107-6

Valli, L. N. (2024). A succinct synopsis of predictive analysis applications in the contemporary period. International Journal of Multidisciplinary Sciences and Arts, 3(4), 26-36.

Kunapuli G, Varghese BA, Ganapathy P, Desai B, Cen S, Aron M, et al. A decision-support tool for renal mass classification. J Digit Imaging. (2018) 31:929–39. doi: 10.1007/s10278-018-0100-0

Álvarez-Machancoses Ó, Fernández-Martínez JL. Using artificial intelligence methods to speed up drug discovery. Expert Opin Drug Discov. (2019) 14:769– 77. doi: 10.1080/17460441.2019.1621284

Hasan, M., Al Sany, S. A., & Swarnali, S. H. (2024). HARNESSING BIG DATA AND MACHINE LEARNING FOR TRANSFORMATIVE HEALTHCARE INFORMATION MANAGEMENT. Unique Endeavor in Business & Social Sciences, 3(1), 231-245.

Rahman, A., Ashrafuzzaman, M., Jim, M. M. I., & Sultana, R. (2024). Cloud Security Posture Management Automating Risk Identification and Response In Cloud Infrastructures. Academic Journal on Science, Technology, Engineering & Mathematics Education, 4(03), 151-162.

Mehta, A., Patel, N., & Joshi, R. (2024). Method Development and Validation for Simultaneous Estimation of Trace Level Ions in Purified Water by Ion Chromatography. Journal of Pharmaceutical and Medicinal Chemistry, 10(1).

Uzzaman, A., Jim, M. M. I., Nishat, N., & Nahar, J. (2024). Optimizing SQL databases for big data workloads: techniques and best practices. Academic Journal on Business Administration, Innovation & Sustainability, 4(3), 15-29.

Rahman, M. A., & Jim, M. M. I. (2024). Addressing Privacy and Ethical Considerations In Health Information Management Systems (IMS). International Journal of Health and Medical, 1(2), 1-13.

Jeni, F. A., Mutsuddi, P., & Das, S. (2020). The impact of rewards on employee performance: a study of commercial banks in Noakhali Region. Journal of Economics, Management and Trade, 26(9), 28-43.

Rahman, M., Hasan, M., Rahman, M., & Momotaj, M. (2024). A framework for patient-centric consent management using blockchain smart contracts in pre-dictive analysis for healthcare in-dustry. Int. J. Health Syst. Med. Sci, 3(3), 45-59.

Das, S. K., & Moniruzzaman, M. (2024). Environmental Impact And Management In The Face Of Industrial Growth: A Study Of Noapara Municipal Area, Jessore, Bangladesh. Frontiers in Applied Engineering and Technology, 1(01), 84-104..

Ahuja, A. S. (2019). The impact of artificial intelligence in medicine on the future role of the physician. PeerJ, 7, e7702. doi:10.7717/peerj.7702.

Talukder, M. J., Nabil, S. H., Hossain, M. S., & Ahsan, M. S. (2024). Smooth Switching Control for Power System-Integration with Deep Learning and Cybersecurity. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 293-313.

Hwang, S. N., Das, S. K., Moniruzzaman, M., Rai, E., & Hossain, M. (2024). MAPPING TORNADO HOTSPOTS IN THE US: SPATIAL AND TEMPORAL ANALYSIS ACROSS THE US.

Mintz, Y., & Brodie, R. (2019). Introduction to artificial intelligence in medicine. Minimally Invasive Therapy and Allied Technologies, 28(2), 73–81. doi:10.1080/13645706.2019.1575882.

Golden, J. A. (2017). Deep learning algorithms for detection of lymph node metastases from breast cancer helping artificial intelligence be seen. JAMA, 318(22), 2184–2186. doi:10.1001/jama.2017.14580.

Khan, M. I., Arif, A., & Khan, A. R. A. (2024). AI's Revolutionary Role in Cyber Defense and Social Engineering. International Journal of Multidisciplinary Sciences and Arts, 3(4), 57-66.

Valli, L. N. (2024). Predictive Analytics Applications for Risk Mitigation across Industries; A review. BULLET: Jurnal Multidisiplin Ilmu, 3(4), 542-553.

Von der Lieth GA. An artificial intelligence approach to legal rea- soning. Cambridge: Massachusetts Institute of Technology; 1987.

Khan, R., Zainab, H., Khan, A. H., & Hussain, H. K. (2024). Advances in Predictive Modeling: The Role of Artificial Intelligence in Monitoring Blood Lactate Levels Post-Cardiac Surgery. International Journal of Multidisciplinary Sciences and Arts, 3(4), 140-151.

Zainab, H., Khan, A. H., Khan, R., & Hussain, H. K. (2024). Integration of AI and Wearable Devices for Continuous Cardiac Health Monitoring. International Journal of Multidisciplinary Sciences and Arts, 3(4), 123-139.

Mehta, A., & Choudhary, V. (2023). COVID-19 as a Catalyst for Innovation: Pharmaceutical Industry Manufacturing Techniques and Management of Endemic Diseases. International Journal of Multidisciplinary Sciences and Arts, 2(4), 242-251.

Nasir, S., Hussain, H. K., & Hussain, I. (2024). Active Learning Enhanced Neural Networks for Aerodynamics Design in Military and Civil Aviation. International Journal of Multidisciplinary Sciences and Arts, 3(4), 152-161.

Lalji, S. M., Ali, S. I., Hussain, S., Ali, S. M., & Lashari, Z. A. (2023). Variations in cold flow and physical properties of Northern Pakistan gas condensate oil after interacting with different polymeric drilling mud systems. Arabian Journal of Geosciences, 16(8), 477.

Lodhi, S. K., Hussain, H. K., & Gill, A. Y. (2024). Renewable Energy Technologies: Present Patterns and Upcoming Paths in Ecological Power Production. Global Journal of Universal Studies, 1(1), 108-131.

Arif, A., Khan, M. I., & Khan, A. R. A. (2024). An overview of cyber threats generated by AI. International Journal of Multidisciplinary Sciences and Arts, 3(4), 67-76.

Khan, M. A. A., Hussain, M., Lodhi, S. K., Zazoum, B., Asad, M., & Afzal, A. (2022). Green metalworking fluids for sustainable machining operations and other sustainable systems: a review. Metals, 12(9), 1466.

Rauf, M. A., Jim, M. M. I., Rahman, M. M., & Tariquzzaman, M. (2024). AI-POWERED PREDICTIVE ANALYTICS FOR INTELLECTUAL PROPERTY RISK MANAGEMENT IN SUPPLY CHAIN OPERATIONS: A BIG DATA APPROACH. International Journal of Science and Engineering, 1(04), 32-46.

Taddeo M, Floridi L. How AI can be a force for good. Science. (2018) 361:751–2. doi:10.1126/science.aat5991

Valli, L. N., & Sujatha, N. (2024, April). Predictive Modeling and Decision-Making in Data Science: A Comparative Study. In 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST) (pp. 603-608). IEEE.

Khan, M. A. A., Hussain, M., Lodhi, S. K., Zazoum, B., Asad, M., & Afzal, A. (2022). Green Metalworking Fluids and Other Sustainable Systems: A Review. Metals 2022, 12, 1466.

Arieno A, Chan A, Destounis SV. A review of the role of augmented intelligence in breast imaging: from Automated Breast Density Assessment to risk stratification. Am J Roentgenol. (2019) 212:259–70. doi: 10.2214/AJR.18.20391

Mennella, C., Maniscalco, U., De Pietro, G., & Esposito, M. (2024). Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon, 10(4).

Downloads

Published

2025-03-10

How to Cite

Lama, R. ., Sen Oo , S. ., Tamang, B. ., Ara, J. ., & Nazmul Islam, M. . (2025). AI-Driven Patient Outcome Prediction: Balancing Innovation And Ethics In Healthcare. BULLET : Jurnal Multidisiplin Ilmu, 4(1), 88–98. Retrieved from https://journal.mediapublikasi.id/index.php/bullet/article/view/5113

Most read articles by the same author(s)