Analisis Kerusakan Retract Actuator Nose Landing Gear Pada Pesawat Boeing 737-800 Next Generation
Keywords:
Retract Actuator, Slow To Retract, Troubleshooting, Fault Tree AnalysisAbstract
The retract actuator is one of the main parts of the landing gear, which functions to retract or extend. The retract actuator must be free in its operation and its movement must also be smooth. If the aircraft experiences a failure of the retract actuator function, namely the retract actuator in a slow to retract condition. Where there is a slowdown during retract and extend. Careful handling is required and in accordance with applicable aircraft maintenance procedures, especially regarding slow to retract conditions. This study uses a direct observation method for the analysis of the troubleshooting process on the B737-800 NG in the Merpati Maintenance Facility hangar. In addition, this study also uses the Fault Tree Analysis method to obtain the cause of the failure of the standby reservoir. After analyzing the results, the possible causes of failure in the Retract Actuator are by using the Fault Tree Analysis (FTA) method, the minimum cut set results are obtained with calculations consisting of 18 basic events.
References
Adler, R., Domis, D., Höfig, K., Kemmann, S., Kuhn, T., Schwinn, J. P., & Trapp, M. (2011). Integration of component fault trees into the UML. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6627 LNCS, 312–327. https://doi.org/10.1007/978-3-642-21210-9_30
Anand, A., & Somani, A. K. (1998). Hierarchical analysis of fault trees with dependencies, using decomposition. Proceedings of the Annual Reliability and Maintainability Symposium, 69–75. https://doi.org/10.1109/rams.1998.653591
Beccuti, M., Codetta-Raiteri, D., Franceschinis, G., & Haddad, S. (2008). Non deterministic repairable fault trees for computing optimal repair strategy. VALUETOOLS 2008 - 3rd International Conference on Performance Evaluation Methodologies and Tools. https://doi.org/10.4108/ICST.VALUETOOLS2008.4411
Bobbio, A. Portinale, L. Minichino, M. Ciancamerla, E. (2001). Improving the Analysis of Dependable Systems by Mapping Fault Trees into Bayesian Networks. Realiability Engineering & System Safety. Reliability Engineering and System Safety 71, 71, 249–260.
Booyse, W., Wilke, D. N., & Heyns, S. (2020). Deep digital twins for detection, diagnostics and prognostics. Mechanical Systems and Signal Processing, 140, 106612. https://doi.org/10.1016/j.ymssp.2019.106612
Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2021). Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics. Data, 6(1), 1–14. https://doi.org/10.3390/data6010005
da Costa, P. R. de O., Akçay, A., Zhang, Y., & Kaymak, U. (2020). Remaining useful lifetime prediction via deep domain adaptation. Reliability Engineering and System Safety, 195. https://doi.org/10.1016/j.ress.2019.106682
Hu, C., Youn, B. D., Wang, P., & Taek Yoon, J. (2012). Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliability Engineering and System Safety, 103, 120–135. https://doi.org/10.1016/j.ress.2012.03.008
Kabir, S. (2017). An overview of Fault Tree Analysis and its application in model based dependability analysis. Expert Systems with Applications, 77, 114–135. https://doi.org/10.1016/j.eswa.2017.01.058
Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799–834. https://doi.org/10.1016/j.ymssp.2017.11.016
Lukito, I., Pambekti, A., Budiono, C. S., Kurniawan, R., Prakoso, A., & Mizan, F. (2022). Analisis Kegagalan Fungsi Traffic Alert and Collision Avoidance System Boeing 737-800 Next Garuda Indonesia dan Indentifikasi Penyebab Kegagalan Dengan Metode Fault Tree. Conference SENATIK STT Adisutjipto Yogyakarta, 7, 27–32. https://doi.org/10.28989/senatik.v7i0.459
Nugroho, A. G., & Setijono, E. (2018). Efisiensi Fasilitas Perawatan Pesawat Udara Terhadap Ruang Slot Di Hangar 4 Gmf Aeroasia (Studi Kasus Untuk Pesawat Boeing 737-800 Ng). Seminar Nasional Inovasi Teknologi Penerbangan (SNITP) Tahun, September.
Nurdin, M. A., Latif, H. L., & Sabur, F. (2023). Penerapan Augmented Reality Pada Procedure Removal dan Installation Engine Pesawat Cessna 152. JAMETS : Journal of Aircraft Maintenance Engineering & Aviation Technologies, 2(2), 90–101. https://doi.org/10.46509/jamets.v2i2.467
Pambekti, A., Kurniawan, R., Prakoso, A., Budiono, C. S., Lukito, I., & Arazi, H. M. (2022). Analisis Kerusakan APU Fuel System Pada Pesawat B737-500 Dengan Metode Fault Tree Analysis. VII, 21–26.
Pambekti, A., Lukito, I., Budiono, C. S., & Kurniawan, R. (2022). Anti-Icing Engine Damage Analysis Boeing 737 - 800 Ng With Fault Tree Analysis Method. Journal of Business, Social and Technology (Bustechno), 3(1), 19–26. https://doi.org/10.46799/jbt.v3i1.65
Rifa’i, M. H., & Riadi, S. (2023). ANALISIS PENGENDALIAN COST OF POOR QUALITY PADA PERAWATAN PESAWAT WIDE BODY DINAS BASE MAINTENANCE MENGGUNAKAN METODE DMAIC DI PT. GMF AEROASIA Tbk. ISTA Online Technologi Journal, 04(01), 69–77. http://iontech.ista.ac.id/index.php/iontech
Zhang, C., Lim, P., Qin, A. K., & Tan, K. C. (2017). Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2306–2318. https://doi.org/10.1109/TNNLS.2016.2582798