Green Innovations: Artificial Intelligence and Sustainable Materials in Production

Authors

  • Shahrukh Khan Lodhi Trine University Detroit, Michigan
  • Ahmad Yousaf Gill American National University 1814 E Main St Salem VA 24153
  • Hafiz Khawar Hussain DePaul University Chicago, Illinois,USA

Keywords:

Artificial intelligence, moral AI, workforce impact, data privacy, circular economy, production, eco-friendly products, sustainable materials, predictive maintenance, legislative ramifications, and energy efficiency

Abstract

This study examines the revolutionary potential of integrating artificial intelligence (AI) with sustainable materials in production through a series of case studies, featuring innovations by Adidas, Tesla, Unilever, and IKEA. These illustrations demonstrate how AI may be used to create recyclable goods, maximize material efficiency, and simplify supply chains—all of which greatly lessen the manufacturing process's negative environmental effects. The study also identifies the main domains in which these technologies are propelling improvements in operational effectiveness and environmental sustainability. Robust regulatory frameworks are required to assure the safe, transparent, and equitable implementation of AI as it becomes increasingly integrated into industrial processes. The article also highlights the need for responsible innovation by discussing the ethical and policy ramifications of utilizing AI in sustainable manufacturing, as well as the societal impact of AI on data privacy and the workforce. Lastly, the environmental effects of AI itself are discussed, emphasizing the need for renewable energy sources and energy-efficient AI systems. Through collaboration between governmental, industrial, and social sectors, artificial intelligence (AI) can be leveraged to propel environmentally and socially responsible production methods. In order to create a more sustainable and prosperous future, the paper's conclusion emphasizes the need for a balanced strategy that optimizes AI's benefits while guaranteeing moral and egalitarian outcomes. Going ahead, the report makes the case that artificial intelligence and sustainable materials will play a pivotal role in molding a manufacturing landscape that is both efficient and environmentally beneficial. However, achieving this potential will necessitate managing the dangers and difficulties that come with it carefully.

References

Tao, F., Qi, Q., Liu, A., and Kusiak, A., 2018, “Data-Driven Smart Manufacturing,” J. Manuf. Syst., 48(Part C), pp. 157–169.

Wang, P., GAO, R., and Fan, Z., 2015, “Cloud Computing for Cloud Manufacturing: Benefits and Limitations,” ASME J. Manuf. Sci. Eng. Trans., 137(4), p. 044002.

GAO, R., Wang, L., Teti, R., Dornfeld, D., Kumara, S., Mori, M., and Helu, M., 2015, “Cloud-Enabled Prognosis for Manufacturing,” CIRP Ann., 64(2), pp. 749–772.

Malkoff, D. B., 1987, “A Framework for Real-Time Fault Detection and Diagnosis Using Temporal Data,” Artif. Intell. Eng., 2(2), pp. 97–111

Gang, N., Son, J. D., Widodo, A., Yang, B. S., Hwang, D. H., and Kang, D. S., 2007, “A Comparison of Classifier Performance for Fault Diagnosis of Induction Motor Using Multi-Type Signals,” Struct. Health Monit., 6(3), pp. 215–229.

Wang, J., Liu, S., GAO, R., and Yan, R., 2012, “Current Envelope Analysis for Defect Identification and Diagnosis in Induction Motors,” J. Manuf. Syst., 31(4), pp. 380–387.

Zhang, J., Wang, P., GAO, R., and Yan, R., 2018, “An Image Processing Approach to Machine Fault Diagnosis Based on Visual Words Representation,” Proc. Manuf., 19, pp. 42–49.

Sun, C., Wang, P., Yan, R., and GAO, R., 2016, “A Sparse Approach to Fault Severity Classification for Gearbox Monitoring,” Proceedings of the International Conference on Information Fusion, Heidelberg, Germany, pp. 2303–2308.

Du, Z., Chen, X., Zhang, H., and Yan, R., 2015, “Sparse Feature Identification Based on Union of Redundant Dictionary for Wind Turbine Gearbox Fault Diagnosis,” IEEE Trans. Ind. Electron., 62(10), pp. 6594–6605

Zhou, C., Liu, K., Zhang, X., Zhang, W., and Shi, J., 2016, “An Automatic Process Monitoring Method Using Recurrence Plot in Progressive Stamping Processes,” IEEE Trans. Autom. Sci. Eng., 13(2), pp. 1102–1111.

Rao, P. K., Liu, J., Roberson, D., Kong, Z., and Williams, C., 2015, “Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors,” ASME J. Manuf. Sci. Eng., 137(6), p. 061007.

Anh, T. D., Binh, T. D., Long, N. D. B., Ai, T. V., Tan, K. S., & Van, N. T. L. (2022). Strategic Vision for the Implementation of the Industrial Revolution 4.0 in the Vietnamese Context. International Journal of Technology, 13(5), 958. https://doi.org/10.14716/ijtech.v13i5.5838

Atasu, A., Dumas, C., & Wassenhove, L. N. V. (2021, July 1). The Circular Business Model. Harvard Business Review. https://hbr.org/2021/07/the-circular-business-model

Ayari, N. (2013). Internal Capabilities, R&D Cooperation and firms’ Innovativeness Level. Gestion 2000, 30(2), 33–53. https://doi.org/10.3917/g2000.302.0033

Chhimwal, M., Agrawal, S., & Kumar, G. (2021). Challenges in the implementation of circular economy in manufacturing industry. Journal of Modelling in Management, 17(4), 1049–1077. https://doi.org/10.1108/JM2-07-2020-0194

Colombo, B., Gaiardelli, P., Dotti, S., & Boffelli, A. (2021). Business Models in Circular Economy: A Systematic Literature Review. In A. Dolgui, A. Bernard, D. Lemoine, G. von Cieminski, & D. Romero (Eds.), Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (pp. 386–393). Springer International Publishing. https://doi.org/10.1007/978-3-030-85906-0_43

De, S., Zhou, Y., Larizgoitia Abad, I., & Moessner, K. (2017). Cyber–Physical–Social Frameworks for Urban Big Data Systems: A Survey. Applied Sciences, 7(10), Article 10. https://doi.org/10.3390/app7101017

Deloitte. (2022). How will skills evolve for the “green-collar” workforce? Deloitte. https://action.deloitte.com/insight/3023/how-will-skills-evolve-for-the-'green-collar'- workforce

Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Eco-Friendly Innovation and Corporate Evolution in Long a Province's Digital Transformation Age 16 Agriculture, 12(10), Article 10. https://doi.org/10.3390/agriculture12101745

Friha, O., Ferrag, M. A., Shu, L., Maglaras, L., & Wang, X. (2021). Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE/CAA Journal of Automatica Sinica, 8(4), 718–752. https://doi.org/10.1109/JAS.2021.1003925

Adesibikan, A. A., Emmanuel, S. S., Nafiu, S. A., Tachia, M. J., Iwuozor, K. O., Emenike, E. C., & Adeniyi, A. G. (2024). A review on sustainable photocatalytic degradation of agro-organochlorine and organophosphorus water pollutants using biogenic iron and iron oxide-based nanoarchitecture materials. Desalination and Water Treatment, 100591.

Goni, F. A., Gholamzadeh Chofreh, A., Estaki Orakani, Z., Klemeš, J. J., Davoudi, M., & Mardani, A. (2021). Sustainable business model: A review and framework development. Clean Technologies and Environmental Policy, 23(3), 889–897. https://doi.org/10.1007/s10098-020-01886-z

Gross, L. (2018). Confronting climate change in the age of denial. PLOS Biology, 16(10), e3000033. https://doi.org/10.1371/journal.pbio.3000033

Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317. https://doi.org/10.1016/j.jbusres.2016.08.004

Hung, T. K., Van, N. T. L., & Long, N. D. B. (2017). Factors Affecting Employee Retention in Small and Medium Enterprises in Hanoi Capital of Viet Nam. International Journal of Business and Management Studies, 06(02), 181–190

Kaur, A., & Lodhia, S. K. (2019). Sustainability accounting, accountability and reporting in the public sector: An overview and suggestions for future research. Meditari Accountancy Research, 27(4), 498–504. https://doi.org/10.1108/MEDAR-08-2019-510

Lan, N. D. Q., & Long, N. D. B. (2018). Key Attributes to Win Online Consumers in Vietnam. International Journal of Business and Management Studies, 07(02), 283–300.

Le, T. V., Long, N. D. B., Tan, K. S., & Le, T. T. (2022). Employees’ Loyalty at Le Tran Furniture Limited in Vietnam. Proceedings of the International Conference on Communication, Language, Education and Social Sciences (CLESS 2022), 11–21. https://doi.org/10.2991/978-2-494069-61-9_3

Long An Newspaper Online. (2023, September 7). Tin tức—Sự kiện—Phát triển kinh tế gắn với bảo vệ môi trường... https://www.longan.gov.vn/Pages/TinTucChiTiet.aspx?ID=49758&CategoryId=&InitialT abId=Ribbon.Read

Long, N. D. B., Duong, L. T. H., Huy, N. N., Nguyen, H. T. T., Hai, T. T., Tuan, V. M., & Tan, K. S. (2022). The Impact of Organizational Culture on Performance: Case Study of Thung Nham Birds Ecological Tourism Area in Vietnam (1st ed., Vol. 1). OJTASK Academy. https://ojtask.com/index.php/ojtask/article/view/25

Long, N. D. B., Lan, N. D. Q., & Tran, H. L. L. (2017). Human Resources Development for Supporting Industries through Technical Intern Trainee Dispatch Programe of JITCO. International Journal of Arts & Sciences, 10(02), 211–222

Long, N. D. B., Ooi, P. T., Le, T. V., Thiet, L. T., Ai, T. V., An, L. Q., Hudson, A., Tan, K. S., & Van, N. T. L. (2022). Leading in the Age of the Fourth Industrial Revolution – A Perspective from Vietnam. International Journal of Technology, 13(5), 949–957. https://doi.org/10.14716/ijtech.v13i5.5839

Long, N. D. B., Van, N. T. L., Lan, N. D. Q., & Tuan, T. V. (2018). Factors Influencing the Success of the Vietnamese Technical Trainees: An Empirical Study of the Technical Trainee Training Program by Japan International Technical Cooperation Organization (JITCO). International Journal of Multidisciplinary Thought, 07(02), 221–234.

Nikolaou, I. E., Jones, N., & Stefanakis, A. (2021). Circular Economy and Sustainability: The Past, the Present and the Future Directions. Circular Economy and Sustainability, 1(1), 1–20. https://doi.org/10.1007/s43615-021-00030-3

OECD. (2009). Sustainable Manufacturing and Eco-Innovation: Framework, Practices Eco-Friendly Innovation and Corporate Evolution in Long An Province's Digital Transformation Age 17 and Measurement (pp. 1–36). Structural Policy Division, OECD for Science, Technology and Industry. https://www.oecd.org/innovation/inno/43423689.pdf

OECD. (2021, November). Green growth and eco-innovation. https://www.oecd.org/innovation/inno/greengrowthandeco-innovation.htm 25. Oncioiu, I., Petrescu, A.-G., Bîlcan, F.-R., Petrescu, M., Popescu, D.-M., & Anghel, E. (2020). Corporate Sustainability Reporting and Financial Performance. Sustainability, 12(10), Article 10. https://doi.org/10.3390/su12104297

Philip, K., Iwan, S., & Hermawan, K. (2016). Marketing 4.0: Moving from Traditional to Digital. Wiley. https://www.wiley.com/enus/Marketing+4+0%3A+Moving+from+Traditional+to+Digital-p-9781119341208

Scheel, R. (2021, June 29). 3 Key Considerations for Global Collaborations On Sustainability. https://www.forbes.com/sites/forbesbusinesscouncil/2021/06/29/3-keyconsiderations-for-global-collaborations-on-sustainability/

Sebestyén, V., Czvetkó, T., & Abonyi, J. (2021). The Applicability of Big Data in Climate Change Research: The Importance of System of Systems Thinking. Frontiers in Environmental Science, 9. https://www.frontiersin.org/articles/10.3389/fenvs.2021.619092

Sun, X., Yu, H., Solvang, W. D., Wang, Y., & Wang, K. (2022). The application of Industry 4.0 technologies in sustainable logistics: A systematic literature review (2012– 2020) to explore future research opportunities. Environmental Science and Pollution Research, 29(7), 9560–9591. https://doi.org/10.1007/s11356-021-17693-y

Thomas, H. D., & Jeanne, G. H. (2017). Competing on Analytics, Updated, with a New Introduction: The New Science of Winning. Harvard Business Press Books. https://hbsp.harvard.edu/product/10157-PDF-ENG

Trang, L. T., Long, N. D. B., Tan, K. S., Ly, S., & Ai, T. V. (2022). Factors Influencing Talent Management in Nhon Hoa Scale Manufacturing Company. Proceedings of the International Conference on Communication, Language, Education and Social Sciences (CLESS 2022), 32–41. https://doi.org/10.2991/978-2-494069-61-9_5

Trang, L. T., Sieng, L., Long, N. D. B., & Van, N. T. L. (2019). Talent Management in Nhon Hoa Scale Company. AICIBS 2019 (Boston), 56–63. http://flepublications.com/proceedings/4th-academic-international-conference-oninterdisciplinary-business-studies/

Tuan, P. H., Thy, P. H. M., Tam, L. M., & Long, N. D. B. (2023). Factors Affecting Employee Retention: An Empirical Study in Vietnam. Oxford Journal of Technology, Arts, Sciences and Knowledge, 2(1), Article 1. https://ojtask.com/index.php/ojtask/article/view/29

WEF. (2021, February 22). 5 reasons to shift from a ‘throw-it-away’ consumption model to a ‘circular economy.’ World Economic Forum. https://www.weforum.org/agenda/2021/02/change-five-key-areas-circular-economysustainability/

JRC (2018) Sustainable Product Policy. (Seville, SPAIN: European Commission, Joint Research Centre (JRC))

González, J. (2013) Eco-design and the impact in ICT assets End of Life. 3rd ITU Green Standards Week (Madrid, Spain: ITU)

AGIT (2019) Ecodesign of digital services. (AGIT (Alliance Green IT))

Deloitte (2019) D3.4 Recommendations towards a Policy Action Plan on “green ICT“. (ICTFOOTPRINT.eu)

ICT for Sustainable Growth Unit. Energy Efficiency of the ICT Sector: ICT for Sustainable Growth. (Brussels: European Commission)

PAI (2019) the Partnership on AI. Partnersh. AI PAI [7] Butler, D. (2017) AI summit aims to help worlds poorest. Nat. News 546: 196.

Patterson, D. (2016) United Nations CITO: Artificial intelligence will be humanity’s final innovation. TechRepublic

UN (2017) Big Data for Sustainable Development. U. N. UN

Bibri, S.E., Krogstie, J. (2017) Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 31: 183–212

Zou, P.X.W., Xu, X., Sanjayan, J., Wang, J. (2018) Review of 10 years research on building energy performance gap: Life-cycle and stakeholder perspectives. Energy Build. 178: 165–81.

Wong, J.K.W., Zhou, J. (2015) Enhancing environmental sustainability over building life cycles through green BIM: A review. Autom. Constr. 57: 156–65

Kamble, S.S., Gunasekaran, A., Gawankar, S.A. (2018) Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Saf. Environ. Prot. 117: 408–25.

Lei, G., Zhu, J., Guo, Y., Liu, C., Ma, B. (2017) A Review of Design Optimization Methods for Electrical Machines. Energies 10: 1962.

Bibri, S.E. (2018) A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies. Sustain. Cities Soc. 38: 758–94.

Bibri, S.E. (2018) The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 38: 230–53.

Bibri, S.E., Krogstie, J. (2017) ICT of the new wave of computing for sustainable urban forms: Their big data and context-aware augmented typologies and design concepts. Sustain. Cities Soc. 32: 449–74.

Persson, O. (1994) the intellectual base and research fronts of JASIS 1986–1990. J. Am. Soc. Inf. Sci. 45: 31–8.

A. R. Dehghani-Sanij, E. Tharumalingam, M. B. Dusseault and R. Fraser, Renewable Sustainable Energy Rev., 2019, 104, 192–208.

D. Parsons, Int. J. Life Cycle Assess. 2007, 12, 197–203.

R. M. Iost, F. C. P. F. Sales, M. V. A. Martins, M. C. Almeida and F. N. Crespilho, ChemElectroChem, 2015, 2, 518–521.

K. Senthilkumar, R. Chandru and J. Harrish, Biomass Convers. Bioregion. 2023, DOI: 10.1007/s13399-023-04590-2.

G. Dryhurst, K. M. Kadish, F. Scheller and R. Renneberg, in Biological Electrochemistry, ed. G. Dryhurst, K. M. Kadish, F. Scheller and R. Renneberg, Academic Press, 1982, pp. 1–115.

. K. Addo, R. L. Arechederra and S. D. Minteer, J. Power Sources, 2011, 196, 3448–3451

M. N. Arechederra, P. K. Addo and S. D. Minteer, Electrochim. Acta, 2011, 56, 1585–1590. 26 A. Orita, M. G. Verde, M. Sakai and Y. S. Meng, Nat. Commun., 2016, 7, 13230.

E. He, J. Ren, L. Wang, F. Li, L. Li, T. Ye, Y. Jiao, D. Li, J. Wang, Y. Wang, R. Gao and Y. Zhang, Adv. Mater., 2023, 35, 2304141.

F. Wang, X. Liao, H. Wang, Y. Zhao, J. Mao and D. G. Truhlar, Interdisciplinary Mater., 2022, 1, 517–525.

A. A. Yazdi, R. Preite, R. D. Milton, D. P. Hickey, S. D. Minteer and J. Xu, J. Power Sources, 2017, 343, 103–108. 30 W. Zhou, W. Zhang, W. Geng, Y. Huang, T. K. Zhang, Z. Q. Yi, Y. Ge, Y. Huang, G. Tian and X. Y. Yang, ACS Nano, 2024, 18, 10840–10849

Y. Gao, J. H. Cho, J. Ryu and S. Choi, Nano Energy, 2020, 74, 104897. 32 M. Landers and S. Choi, Nano Energy, 2022, 97, 107227.

Adesibikan, A. A., Emmanuel, S. S., Nafiu, S. A., Tachia, M. J., Iwuozor, K. O., Emenike, E. C., & Adeniyi, A. G. (2024). A review on sustainable photocatalytic degradation of agro-organochlorine and organophosphorus water pollutants using biogenic iron and iron oxide-based nanoarchitecture materials. Desalination and Water Treatment, 100591.

T.-G. Cha, U. Tsedev, A. Ransil, A. Embree, D. B. Gordon, A. M. Belcher and C. A. Voigt, Adv. Funct. Mater. 2021, 31, 2010867.

M. Teshima, S. Sutiono, M. Do¨ring, B. Beer, M. Boden, G. Schenk and V. Sieber, ChemSusChem, 2024, 17, e202301132.

H. Wang, P. Hu, J. Yang, G. Gong, L. Guo and X. Chen, Adv. Mater., 2015, 27, 2348–2354.

M. I. Akbar, N. Zahirah, Y. M. P. Utomo, R. Risnawati, W. Astuti, F. M. Rohimsyah and Y. Triana, Energy Storage, 2024, 6, e547. 37 M. Widyaningsih, M. Abidin, A. F. Hafidh, A. Murniati, R. Ragadhita, K. M. Rizky and A. Mudzakir, ASEAN J. Sci. Eng., 2024, 4, 1–14.

R. Sigalingging and Y. Sitorus, J. Sustainable Agriculture Biosyst. Eng., 2024, 02, 1–010. 39 H. Wang, Y. Yang and L. Guo, Adv. Energy Mater. 2017, 7, 1601709.

Z. Zhu, T. Kin Tam, F. Sun, C. You and Y. H. Percival Zhang, Nat. Commun., 2014, 5, 3026.

J. Hong, M. Lee, B. Lee, D.-H. Seo, C. B. Park and K. Kang, Nat. Commun., 2014, 5, 5335.

T. B. Schon, A. J. Tilley, C. R. Bridges, M. B. Miltenburg and D. S. Seferos, Adv. Funct. Mater. 2016, 26, 6896–6903.

X. Li, J. Liang, Z. Hou, Y. Zhu and Y. Qian, RSC Adv., 2014, 4, 50950–50954. 44 Z. Li, L. Zhang, B. S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B. C. Olsen, C. M. B. Holt and D. Mitlin, Adv. Energy Mater., 2012, 2, 431–437

Y. Xia, J. Guan and X. Du, J. Energy Storage, 2023, 72, 108776. 46 X. Wang, D. Kong, Y. Zhang, B. Wang, X. Li, T. Qiu, Q. Song, J. Ning, Y. Song and L. Zhi, Nanoscale, 2016, 8, 9146–9150.

Mona Mohamed, Abduallah Gamal, Toward Sustainable Emerging Economics based on Industry 5.0: Leveraging Neutrosophic Theory in Appraisal Decision Framework, Neutrosophic Systems with Applications, Vol. 1, (2023): pp. 14-21

Ghenai, C., Husein, L. A., Al Nahlawi, M., Hamid, A. K., & Bettayeb, M. (2022). Recent trends of digital twin technologies in the energy sector: A comprehensive review. Sustainable Energy Technologies and Assessments, 54, 102837.

Ogbuke, N. J., Yusuf, Y. Y., Dharma, K., & Mercangoz, B. A. (2022). Big data supply chain analytics: ethical, privacy and security challenges posed to business, industries and society. Production Planning & Control, 33(2-3), 123-137.

O’Donovan, Peter, et al. "An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities." Journal of big data 2.1 (2015): 1-26.

Rossit, D. A., Tohmé, F., & Frutos, M. (2019). A data-driven scheduling approach to smart manufacturing. Journal of Industrial Information Integration, 15, 69-79

Medojevic, M., Villar, P. D., Cosic, I., Rikalovic, A., Sremcev, N., & Lazarevic, M. (2018). ENERGY MANAGEMENT IN INDUSTRY 4.0 ECOSYSTEM: A REVIEW ON POSSIBILITIES AND CONCERNS. Annals of DAAAM & Proceedings

Rani, M., & Singh, R. (2024). Role of Artificial Intelligence in Sustainable Finance. In Engineering Applications of Artificial Intelligence (pp. 409-419). Cham: Springer Nature Switzerland.

Henry, J., & Abeer, B. (2024). Healthcare data security: protecting patient information in sustainable data stores. EasyChair Preprint, (12212).

J.-H. Wang, L.-F. Chen, W.-X. Dong, K. Zhang, Y.-F. Qu, J.-W. Qian and S.-H. Yu, ACS Nano, 2023, 17, 19087–19097.

Y. J. Lee, H. Yi, W.-J. Kim, K. Kang, D. S. Yun, M. S. Strano, G. Ceder and A. M. Belcher, Science, 2009, 324, 1051–1055. 49 M. Moradi, Z. Li, J. Qi, W. Xing, K. Xiang, Y.-M. Chiang and A. M. Belcher, Nano Lett., 2015, 15, 2917–2921.

M. Miroshnikov, K. Kato, G. Babu, N. Kumar, K. Mahankali, E. Hohenstein, H. Wang, S. Satapathy, K. P. Divya, H. Asare, L. M. R. Arava, P. M. Ajayan and G. John, ACS Appl. Energy Mater., 2019, 2, 8596–8604.

Y. Liang, C. Luo, F. Wang, S. Hou, S.-C. Liou, T. Qing, Q. Li, J. Zheng, C. Cui and C. Wang, Adv. Energy Mater., 2019, 9, 1802986.

W. Zhang, W. Huang and Q. Zhang, Chem. – Eur. J., 2021, 27, 6131–6144. 54 P. Hu, H. Wang, Y. Yang, J. Yang, J. Lin and L. Guo, Adv. Mater., 2016, 28, 3486–3492.

T. Yan, Y. Zou, X. Zhang, D. Li, X. Guo and D. Yang, ACS Appl. Mater. Interfaces, 2021, 13, 9856–9864. 56 P. Shen, Y. Hu, S. Ji, H. Luo, C. Zhai and K. Yang, Colloids Surf., A, 2022, 647, 129195.

Z. Ji, H. Wang, Z. Chen, P. Wang, J. Liu, J. Wang, M. Hu, J. Fei, N. Nie and Y. Huang, Energy Storage Mater., 2020, 28, 334–341.

Y. Lin, H. Zhang, H. Liao, Y. Zhao and K. Li, Chem. Eng. J., 2019, 367, 139–148

Hassoun, A., Aït-Kaddour, A., Abu-Mahfouz, A. M., Rathod, N. B., Bader, F., Barba, F. J., & Regenstein, J. (2022). The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 1-17.

Gu, F., Guo, J., Hall, P., & Gu, X. (2019). An integrated architecture for implementing extended producer responsibility in the context of Industry 4.0. International Journal of Production Research, 57(5), 1458- 1477.

Roy, M., & Roy, A. (2019). Nexus of internet of things (IoT) and big data: roadmap for smart management systems (SMgS). IEEE Engineering Management Review, 47(2), 53-65.

Samadhiya, A., Agrawal, R., & Garza-Reyes, J. A. (2022). Integrating industry 4.0 and total productive maintenance for global sustainability. The TQM Journal.

Pandey, S., Twala, B., Singh, R., Gehlot, A., Singh, A., Montero, E. C., & Priyadarshi, N. (2022). Wastewater Treatment with Technical Intervention Inclination towards Smart Cities. Sustainability, 14(18), 11563.

Downloads

Published

2024-08-26

How to Cite

Shahrukh Khan Lodhi, Ahmad Yousaf Gill, & Hafiz Khawar Hussain. (2024). Green Innovations: Artificial Intelligence and Sustainable Materials in Production. BULLET : Jurnal Multidisiplin Ilmu, 3(4), 492–507. Retrieved from https://journal.mediapublikasi.id/index.php/bullet/article/view/4474

Most read articles by the same author(s)