Antibiotics in Contemporary Medicine: Advances, Obstacles, and the Future
Keywords:
Key words: Vaccines, prescription drugs, mental health, alternative and complementary therapies, evidence-based practices, patient-centered care, collaborative approaches, evidence-based practices, responsible medication management, holistic well-being; modern medical practices; healthcare; analgesic medications; over-the-counter medicines; pain relief; targeted therapies; personalized medicine; herbal remedies; traditional medicines; vaccines; prescription drugs.Abstract
The complex web of medical interventions is woven together by a wide variety of practices that make up the healthcare industry's shifting landscape. This essay offers a thorough investigation of contemporary medical procedures, illuminating the science, advantages, difficulties, and potential of numerous therapeutic modalities. The paper discusses a wide range of subjects, such as the mechanisms of action of analgesic drugs, the advantages and disadvantages of over-the-counter drugs, the science of pain relief, the function of targeted therapies in personalized medicine, the incorporation of herbal remedies and traditional medicines into modern medicine, the effects of vaccines on global health, and the relationship between prescription drugs and mental health. The report also explores complementary and alternative medicines, looking at its tenets, advantages, and considerations for inclusion in modern healthcare systems. The study emphasizes the dynamic interaction between science, tradition, patient preferences, and changing healthcare paradigms through a thorough investigation of each topic. It places a strong emphasis on the value of patient-centered care, evidence-based methods, and provider collaboration. This research advances knowledge of the complicated, rewarding, and difficult aspects of contemporary medical practices by providing insights into their complexities, advantages, and drawbacks. The investigation of these subjects provides a basis for well-informed decision-making, appropriate drug management, and the quest of holistic well-being as medical research and technology develop.
References
Santos, J., et al.: City of things: enabling resource provisioning in smart cities. IEEE Commun. Mag. 56(7), 177–183 (2018). https://doi.org/10. 1109/mcom.2018.1701322 2.
Harrison, C., et al.: Foundations for smarter cities. IBM J. Res. Dev. 54(4), 1–16 (2010). https://doi.org/10.1147/jrd.2010.2048257 3.
Chen, N., Okada, M.: Toward 6G internet of things and the convergence with RoF system. IEEE Internet Things J. 8(11), 8719–8733 (2021). https://doi.org/10.1109/jiot.2020.3047613 4.
Belli, L., et al.: IoT‐enabled smart sustainable cities: challenges and approaches. Smart Cities. 3(3), 1039–1071 (2020). https://doi.org/10. 3390/smartcities3030052 5.
Du, R., et al.: The sensable city: a survey on the deployment and management for smart city monitoring. IEEE Commun. Surv. Tutor. 21(2), 1533–1560 (2019). https://doi.org/10.1109/comst.2018.2881008 6.
Tu, W.: Data‐driven QoS and QoE management in smart cities: a tutorial study. IEEE Commun. Mag. 56(12), 126–133 (2018). https://doi.org/10. 1109/mcom.2018.1700870 7.
Feng, Z., et al.: Joint communication, sensing, and computation enabled 6G intelligent machine system. IEEE Network. 35(6), 34–42 (2021). https://doi.org/10.1109/mnet.121.2100320 8.
Xie, H., et al.: Data collection for security measurement in wireless sensor networks: a survey. IEEE Internet Things J. 6(2), 2205–2224 (2018). https://doi.org/10.1109/jiot.2018.2883403 9.
Mu, J., et al.: Integrated sensing and communication‐enabled predictive beamforming with deep learning in vehicular networks. IEEE Commun. Lett. 25(10), 3301–3304 (2021). https://doi.org/10.1109/lcomm.2021. 3098748 10.
Yuan, Q., et al.: CESense: cost‐effective urban environment sensing in vehicular sensor networks. IEEE Trans. Intell. Transport. Syst. 20(9), 3235–3246 (2019). https://doi.org/10.1109/tits.2018.2873112 11.
Li, P., et al.: Collaboration of heterogeneous unmanned vehicles for smart cities. IEEE Network. 33(4), 133–137 (2019). https://doi.org/10.1109/ mnet.2019.1800544 12. Zhang, J.A., et al.: An overview of signal processing techniques for joint communication and radar sensing. IEEE J. Sel. Top. Signal Process. 15(6), 1295–1315 (2021). https://doi.org/10.1109/jstsp.2021.3113120 13.
Chen, X., et al.: Code‐division OFDM joint communication and sensing system for 6G machine‐type communication. IEEE Internet Things J. 8(15), 12093–12105 (2021). https://doi.org/10.1109/jiot.2021. 3060858 14.
Wu, K., et al.: Integrating low‐complexity and flexible sensing into communication systems. IEEE J. Sel. Area. Commun. 40(6), 1–1889 (2022). https://doi.org/10.1109/jsac.2022.3156649 15.
Wu, K., et al.: OTFS‐based joint communication and sensing for future industrial IoT. IEEE Internet Things J., 1 (2021). https://doi.org/10. 1109/jiot.2021.3139683 16.
Liu, X., et al.: Joint transmit beamforming for multiuser MIMO communications and MIMO radar. IEEE Trans. Signal Process. 68, 3929–3944 (2020). https://doi.org/10.1109/tsp.2020.3004739 17.
Wu, Q., et al.: A comprehensive overview on 5G‐and‐Beyond networks with UAVs: from communications to sensing and intelligence. IEEE J. Sel. Area. Commun. 39(10), 2912–2945 (2021). https://doi.org/10.1109/ jsac.2021.3088681 18.
Zhang, X., Shin, K.G.: Gap sense: lightweight coordination of heterogeneous wireless devices. In: 2013 Proceedings IEEE INFOCOM, pp. 3094–3101. IEEE (2013) 19.
Chi, Z., et al.: PMC: parallel multi‐protocol communication to heterogeneous IoT radios within a single WiFi channel. In: 2017 IEEE 25th International Conference on Network Protocols (ICNP), pp. 1–10. IEEE (2017) 20.
Wu, D., et al.: Multimedia transmission and process in heterogeneous network. Mobile Network. Appl. 23(3), 597–598 (2018). https://doi.org/ 10.1007/s11036‐018‐1033‐z 21.
Guo, X., He, Y., Zheng, X.: Wizig: cross‐technology energy communication over a noisy channel. IEEE/ACM Trans. Netw. 28(6), 2449–2460 (2020). https://doi.org/10.1109/tnet.2020.3013921 LIU AND YANG - 273 26317680, 2022, 4, Downloaded from https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/smc2.12041 by INASP/HINARI - PAKISTAN, Wiley Online Library on [05/09/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 22.
Ma, D., et al.: Sensing, computing, and communications for energy harvesting IoTs: a survey. IEEE Commun. Surv. Tutor. 22(2), 1222–1250 (2020). https://doi.org/10.1109/comst.2019.2962526
Barbarossa, S., Sardellitti, S., Di Lorenzo, P.: Communicating while Computing: distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Process. Mag. 31(6), 45–55 (2014). https://doi. org/10.1109/msp.2014.2334709
Hu, X., Wong, K.K., Yang, K.: Wireless powered cooperation‐assisted mobile edge computing. IEEE Trans. Wireless Commun. 17(4), 2375–2388 (2018). https://doi.org/10.1109/twc.2018.2794345
Wang, K., Yang, K., Magurawalage, C.S.: Joint energy minimization and resource allocation in C‐RAN with mobile cloud. IEEE Trans. Cloud Comput. 6(3), 760–770 (2018). https://doi.org/10.1109/tcc.2016. 2522439 26.
Bai, T., et al.: Latency minimization for intelligent reflecting surface aided mobile edge computing. IEEE J. Sel. Area. Commun. 38(11), 2666–2682 (2020). https://doi.org/10.1109/jsac.2020.3007035
Zhou, S., et al.: Exploiting moving intelligence: delay‐optimized computation offloading in vehicular fog networks. IEEE Commun. Mag. 57(5), 49–55 (2019). https://doi.org/10.1109/mcom.2019.1800230
Hu, J., Wang, Q., Yang, K.: Energy self‐sustainability in full‐spectrum 6G. IEEE Wireless Commun. 28(1), 104–111 (2021). https://doi.org/10. 1109/mwc.001.2000156
Sanislav, T., et al.: Energy harvesting techniques for internet of things (IoT). IEEE Access. 9, 39530–39549 (2021). https://doi.org/10.1109/ access.2021.3064066
Attarifar, M., Abbasfar, A., Lozano, A.: Modified conjugate beamforming for cell‐free massive MIMO. IEEE Wirel. Commun. Lett. 8(2), 616–619 (2019). https://doi.org/10.1109/lwc.2018.2890470
Mozaffari, M., et al.: Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016). https://doi.org/10.1109/lcomm.2016.2578312
Qiu, C., et al.: Joint resource allocation, placement and user association of multiple UAV‐mounted base stations with in‐band wireless backhaul. IEEE Wirel. Commun. 8(6), 1575–1578 (2019). https://doi.org/10. 1109/lwc.2019.2928544
Yin, S., Zhao, Y., Li, L.: Resource allocation and basestation placement in cellular networks with wireless powered UAVs. IEEE Trans. Veh. Technol. 68(1), 1050–1055 (2019). https://doi.org/10.1109/tvt.2018. 2883093
Zhan, P., Yu, K., Swindlehurst, A.L.: Wireless relay communications with unmanned aerial vehicles: performance and optimization. IEEE Trans. Aero. Electron. Syst. 47(3), 2068–2085 (2011). https://doi.org/10.1109/ taes.2011.5937283
Tang, J., et al.: Minimum throughput maximization for multi‐UAV enabled WPCN: a deep reinforcement learning method. IEEE Access. 8, 9124–9132 (2020). https://doi.org/10.1109/access.2020.2964042
Zhan, C., Zeng, Y., Zhang, R.: Trajectory design for distributed estimation in UAV‐enabled wireless sensor network. IEEE Trans. Veh. Technol. 67(10), 10155–10159 (2018). https://doi.org/10.1109/tvt.2018. 2859450
Bayerlein, H., et al.: Multi‐UAV path planning for wireless data harvesting with deep reinforcement learning. IEEE open j. Commun. Soc. 2, 1171–1187 (2021). https://doi.org/10.1109/ojcoms.2021.3081996
Kopeikin, A., et al.: Multi‐UAV network control through dynamic task allocation: ensuring data‐rate and bit‐error‐rate support. In: 2012 IEEE Globecom Workshops, pp. 1579–1584 (2012)
Zeng, Y., Zhang, R.: Energy‐efficient UAV communication with trajectory optimization. IEEE Trans. Wireless Commun. 16(6), 3747–3760 (2017). https://doi.org/10.1109/twc.2017.2688328