Perbandingan Algoritma K-Means Dan K-Medoids Dalam Pengelompokkan Tingkat Kebahagiaan Provinsi Di Indonesia
Abstract
− Currently what is happening, indicators of the success of a region's development are still determined by the factors of economic growth and poverty, even though the measurement in terms of the economics achieved is not accurate, high economic growth does not always promise community satisfaction, because there may be gaps between communities. then what must be paid more attention is economic growth that can make people happy without any gaps. The happiness of the residents of an area will affect the success of development and social development in the community. Happiness can be used as a measure that can describe the welfare achieved by each individual. In the study, measurements and groupings of which provinces were included in the happiest and less happy provinces in Indonesia were carried out with 3 variables; index of satisfaction, feelings and meaning of life, using the comparison algorithm k-Means and k-Medoids then tested using the RapidMiner Studio application. Based on the DBI k-Medoids validity value of 0.648, it is smaller than the DBI k-Means validity value of 7.52. Produces 2 clusters, namely cluster 0 (the province cluster is less happy) and cluster 1 is the happiest province cluster
References
Aryogi, Ista. 2016. “Subjective Well-Being Individu Dalam Rumah Tangga Di Indonesia.” Jurnal Ilmu Ekonomi Terapan 1(1).
Badruttamam, Ahmad, Sudarno Sudarno, and Di Asih I Maruddani. 2020. “PENERAPAN ANALISIS KLASTER K-MODES DENGAN VALIDASI DAVIES BOULDIN INDEX DALAM MENENTUKAN KARAKTERISTIK KANAL YOUTUBE DI INDONESIA (Studi Kasus: 250 Kanal YouTube Indonesia Teratas Menurut Socialblade).” Jurnal Gaussian 9(3): 263–72.
Bastian, Ade, Harun Sujadi, and Gigin Febrianto. “Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka).” (1): 26–32.
BPS. 2017. “No Title.” Indeks Kebahagiaan 2017. Jakarta: Badan Pusat Statistik Republik Indonesia.
Fatimah, Mauliawati, and Fathul Lubabin Nuqul. 2018. “Kebahagiaan Ditinjau Dari Status Pernikahan Dan Kebermaknaan Hidup.” Jurnal Psikologi 14(2): 145.
Ningsih, Sri Rahayu et al. 2019. “Analisis K-Medoids Dalam Pengelompokkan Penduduk Buta Huruf Menurut Provinsi.” Prosiding Seminar Nasional Riset Information Science (SENARIS) 1(September): 721.
Pamungkas, Bambang. 2019. “Kebahagiaan Penduduk Di Provinsi Jawa Barat.” JISPO (Jurnal Ilmu Sosial dan Ilmu Politik) 9(1): 188–97. https://journal.uinsgd.ac.id/index.php/jispo/article/view/4151/2432%0Ahttps://journal.uinsgd.ac.id/index.php/jispo/article/view/4151.
Priati, and Fauzi Ahmad. 2018. “Data Mining Dengan Teknik Clustering Menggunakan Algoritma K-Means Pada Data Transaksi Superstore.” Seminar Nasional Informatika dan Aplikasinya (September 2017): 15–19.
Rahayu, Theresia Puji. 2016. “The Determinants of Happiness in Indonesia.” Mediterranean Journal of Social Sciences 7(2): 393–404.
Rahayu, Uci Dwi et al. 2022. “Analisis Kasus Perceraian Pada Pengadilan Negeri Bekasi Menggunakan Algoritma K-Means Clustering.” 6(1): 165–72.
Reza Gustrianda, and Dadang Iskandar Mulyana. 2022. “Penerapan Data Mining Dalam Pemilihan Produk Unggulan Dengan Metode Algoritma K-Means Dan K-Medoids.” Jurnal Media Informatika Budidarma 6: 27–34. https://ejurnal.stmik-budidarma.ac.id/index.php/mib%0ADOI 10.30865/mib.v6i1.3294.
Septianingsih, Amin. 2022. “ANALISIS K-MEANS CLUSTERING PADA PEMETAAN PROVINSI.” 3(1): 224–41.
Setyo, D. U., Bambang, W. A., Sunarto. 2018. “Pengaruh Status Sosial Ekonomi Orang Tua Dan Motivasi Belajar Terhadap Hasil Belajar Kognitif Kewirausahaan Pada Siswa Kelas XI SMK Kristen 1 Surakarta Tahun Ajaran 2017/2018.” Program Studi Pendidikan Ekonomi 4(1): 1–10.
Sindi, Sukma et al. 2020. “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia.” Jurnal Teknologi Informasi 4(1): 166–73.