Identifikasi Kata Benda Dan Bukan Kata Benda Menggunakan Single Layer Perceptron Network

Authors

  • Yusuf Unggul Budiman Budiman Universitas Bina Sarana Informatika

Abstract

An abstract is a brief summary of a paper to help readers quickly ascertain the purpose of the study and according to research needs. Abstracts must be clear and informative, provide a statement for the problem under study and the solution. The abstract length is between 90 and 230 words. Avoid unusual abbreviations and define all symbols used in abstracts. Using keywords related to research topics is recommended.

References

A. Maas and S. Tandon. (2016). stanford_dl_ex,” https://github.com. Online.

Anwar, A., & Jatmiko, D. D. (2014). Analisis dan implementasi metode single layer perceptron pada data mining penerimaan mahasiswa baru jalur jppan. 1(single layer perceptron).

Awodele, O., & Jegede, O. (2009). Neural Networks and its Application in Engineering. Proceedings of Informing Science & IT Education Conference (InSITE) 2009, April 2016.

Farsiah, L., Fuadi Abidin, T., & Munadi, K. (2010). Klasifikasi Gambar berwarna menggunkan K-Nearest Neighbor dan Support Vector Machine. 1–5.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning Word Vectors for Sentiment Analysis. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 142–150. https://doi.org/978-1-932432-87-9

Martiana, E. (2010). Introduction to Machine Learning Entin Martiana Learning from Data. Article, 2.

Ng, A. (2012). Supervised learning. Machine Learning, 1–30.

Paper, C. (2016). Improving Behavior Prediction Accuracy by Using Machine Learning for Agent Based Simulation. March.

Riadi, J., & Nurmahaludin. (2009). Aplikasi Jaringan Syaraf Tiruan Multi Layer Perceptron Pada Aplikasi Prakiraan Cuaca. 1.

Wissenschaftliche Dienste des deutschen Bundestags, & Data, B. (2013). Big Data. Aktueller Begriff, 37(13), 23–26.

Downloads

Published

2022-10-15

How to Cite

Budiman, Y. U. B. (2022). Identifikasi Kata Benda Dan Bukan Kata Benda Menggunakan Single Layer Perceptron Network. BULLET : Jurnal Multidisiplin Ilmu, 1(05), 759–768. Retrieved from https://journal.mediapublikasi.id/index.php/bullet/article/view/1015