Teknologi Smart Conservation Untuk Identifikasi Spesies Mangrove Di Kawasan Ekowisata Cuku Nyinyi, Lampung
Keywords:
Convolutional Neural Network, Ekosistem, Mangrove, KonservasiAbstract
Mangroves are a type of forest ecosystem that grows in coastal areas along tropical and subtropical shores throughout Indonesia, particularly in Lampung Province. This ecosystem is found in regions influenced by tidal seawater. Mangroves consist of various species of trees, shrubs, and other plants that can survive in highly saline and muddy environments. Additionally, mangroves provide numerous benefits for environmental sustainability and human well-being. A healthy mangrove ecosystem contains diverse plant species with specific characteristics that help maintain ecological balance and ensure optimal ecological functions.Lampung Province has a mangrove ecotourism site located in Sidodadi Village, Teluk Pandan District, Pesawaran Regency, known as Cuku Nyinyi. Uniquely, Cuku Nyinyi is often used as a research and learning site for students, researchers, and the general public to study mangroves.One of the challenges faced by the ecotourism management team, the Bina Jaya Lestari Forest Farmers Group (KTH), is the difficulty in identifying and classifying mangrove species planted in the Cuku Nyinyi ecotourism area. Additionally, there is a lack of adequate information about mangroves, such as their age, anatomy, habitat, environmental adaptations, benefits, and other relevant details. To address this issue, researchers are developing an automatic identification system for mangrove species based on leaf morphology using a Convolutional Neural Network (CNN) approach. CNN is one of the most effective methods for pattern recognition in images and mangrove image processing. This technology is expected to be implemented in the form of a camera application that can automatically identify information from an image of mangrove leaf morphology captured in the Cuku Nyinyi ecotourism area.The Mangrove Camera Application provides new insights to KTH and the general public regarding the potential and importance of conserving natural resources.
References
M. F. Syahid, “Implementasi deep learning vgg16 dengan transfer learning pada deteksi penyakit tanaman singkong.” Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta, 2021.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv Prepr. arXiv1409.1556, 2014.
D. Irfan, R. Rosnelly, M. Wahyuni, J. T. Samudra, and A. Rangga, “Perbandingan optimasi sgd, adadelta, dan adam dalam klasifikasi hydrangea menggunakan cnn,” J. Sci. Soc. Res., vol. 5, no. 2, pp. 244–253, 2022.
I. N. Sinarta, K. Candrayana, and A. Kurniawan, “Pkm dengan tim pengembangan desa wisata dalam perencanaan masterplan infrastruktur ekowisata di desa besang kawan, kelurahan semarapura kaja,” J. Abdi Daya, vol. 1, no. 2, pp. 23–32, 2021.
E. Karminarsih, “Pemanfaatan ekosistem mangrove bagi minimasi dampak bencana di wilayah pesisir,” J. Manaj. Hutan Trop., vol. 13, no. 3, pp. 182–187, 2007.
M. Aswenty, “Keanekaragaman Mangrove Di Kawasan Ekowisata Hutan Mangrove Petangoran, Gebang, Teluk Pandan, Pesawaran.” UNIVERSITAS ISLAM NEGERI RADEN INTAN LAMPUNG, 2021.
M. N. L. Azizah, D. Wulandari, and A. Marianti, “Tantangan Mewujudkan Ekowisata Sungai Berkelanjutan untuk Meningkatkan Kesejahteraan Manusia dan Melindungi Keanekaragaman Hayati di Indonesia,” Indones. J. Conserv., vol. 10, no. 2, pp. 72–77, 2021.
W. Purnomowati, I. Nugroho, and P. D. Negara, “Entrepreneurship Ability On Ecotourism Services of Local People in Bromo Tengger Semeru National Park, Malang Regency, East Java, Indonesia. 11th International Entrepreneurship Forum (11th IEF) Conference Entrepreneurship and Sustainability: From Lifestyles to Innovative Enterprises in Creative and Sustainable Environments, 3-6 September 2012, 458–473,” in Conference Proceedings, 2012, pp. 458–473.
T. Muliawati, F. Lestari, M. Alvionita, A. Satria, and D. G. Harbowo, “Recognizing the Spatial Distribution and Voronoi Patterns of the Recorded Earthquake Epicenters in Sunda Strait, Indonesia,” J. Fundam. Math. Appl., vol. 7, no. 2, 2024.
I. Agil Al Idrus, G. Hadiprayitno, and M. L. Ilhamdi, “Kekhasan morfologi spesies mangrove di Gili Sulat,” J. Biol. Trop., 2014.
S. Ilahiyah and A. Nilogiri, “Implementasi deep learning pada identifikasi jenis tumbuhan berdasarkan citra daun menggunakan convolutional neural network,” JUSTINDO (Jurnal Sist. Dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.
P. Asnur, R. Kosasih, S. Madenda, and D. A. Rahayu, “Identification of mangrove tree species using deep learning method,” Int J Adv Appl Sci, vol. 12, no. 2, pp. 163–170, 2023.
D. G. Harbowo and T. Muliawati, “Advancing the automated foraminifera fossil identification through scanning electron microscopy image classification: A convolutional neural network approach,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2024, p. 12054.