Enhanced TextCNN dengan Gated Mechanism dan Aspect Fusion untuk Klasifikasi Rating Film Berdasarkan Ulasan Pengguna

Authors

  • Rahmat Hidayat Universitas Pamulang
  • Nur Laelasari Universitas Pamulang
  • Adam Bahtiar Universitas Pamulang
  • Rizky Hermawan Universitas Pamulang
  • Perani Rosyani Universitas Pamulang

Keywords:

TextCNN, Gated Mechanism, Aspect Fusion, Sentiment Analysis, Rating Classification

Abstract

This research proposes an Enhanced TextCNN architecture, integrating a Gated Mechanism and Aspect Fusion to address challenges in automatic movie rating classification from user reviews, such as text complexity and the need to understand sentiment towards specific aspects (e.g., plot, acting). The proposed model incorporates Gated Linear Units (GLU) as an adaptive filter in the convolutional layers to suppress noise and enhance key features, alongside an aspect fusion layer that employs multi-head self-attention to explicitly extract and weight information relevant to specific movie aspects from the text, enabling context-aware classification. Experimental results on a dataset of 50,000 movie reviews show the model achieves an accuracy of 85.67% and a weighted F1 score of 85.55%, significantly outperforming the baseline TextCNN (78.34% accuracy) by a 7.33% improvement, while also demonstrating robustness across reviews of varying lengths and offering better computational efficiency compared to more complex models like BERT.

References

Chen, T., Xu, R., He, Y., & Wang, X. (2022). Aspect-fused text convolutional neural network for rating prediction. Expert Systems with Applications, 187, 115912. https://doi.org/10.1016/j.eswa.2021.115912

Chollet, F. (2021). Deep learning with Python (2nd ed.). Manning Publications.

Dauphin, Y. N., Fan, A., Auli, M., & Grangier, D. (2017). Language modeling with gated convolutional networks. Proceedings of the 34th International Conference on Machine Learning (ICML), 933-941. https://proceedings.mlr.press/v70/dauphin17a.html

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 4171–4186. https://doi.org/10.18653/v1/N19-1423

Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756. https://doi.org/10.48550/arXiv.2008.05756

He, R., Lee, W. S., Ng, H. T., & Dahlmeier, D. (2019). An interactive multi-task learning network for end-to-end aspect-based sentiment analysis. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL), 504–515. https://doi.org/10.18653/v1/P19-1048

Kim, Y. (2014). Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1746–1751. https://doi.org/10.3115/v1/D14-1181

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR).

Li, Y., & Li, Z. (2021). Aspect-aware convolutional neural network for aspect-based sentiment analysis. Knowledge-Based Systems, 227, 107229. https://doi.org/10.1016/j.knosys.2021.107229

Liu, B. (2020). Sentiment analysis: Mining opinions, sentiments, and emotions (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781108639286

Luo, H., Li, T., Liu, B., & Zhang, J. (2022). A multi-head self-attention fusion network for aspect-based sentiment analysis. Neurocomputing, 468, 1–10. https://doi.org/10.1016/j.neucom.2021.10.028

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT), 142–150.

Nguyen, T. H., & Shirai, K. (2021). Aspect-based sentiment analysis using gated convolutional networks with syntactic dependency. Proceedings of the 2021 International Conference on Asian Language Processing (IALP), 45–50. https://doi.org/10.1109/IALP54817.2021.9675263

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. https://doi.org/10.3115/v1/D14-1162

Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., AL-Smadi, M., ... & Zhao, J. (2016). SemEval-2016 task 5: Aspect based sentiment analysis. Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 19–30. https://doi.org/10.18653/v1/S16-1002

Rosyani, P., & Anggraeni, D. (2023). Analisis performa model transformer untuk deteksi emosi pada teks bahasa Indonesia. Journal of Natural Language Processing (JNLP), 5(1), 56–67. https://doi.org/10.14710/jnlp.2023.5112

Rosyani, P., & Febriyanti, N. (2020). Implementasi algoritma naive Bayes dan support vector machine untuk analisis sentimen pada ulasan aplikasi mobile. Jurnal Media Informatika Budidarma, 4(3), 678–685. https://doi.org/10.30865/mib.v4i3.2211

Rosyani, P., & Hidayat, R. (2022). Peningkatan akurasi klasifikasi rating film dengan hybrid model LSTM-CNN pada dataset IMDb. Journal of Computer Science and Information Systems (JCSIS), 9(1), 78–89. https://doi.org/10.33050/jcsis.v9i1.245

Rosyani, P., & Nurjanah, S. (2022). Sistem rekomendasi film berbasis collaborative filtering dan content-based filtering menggunakan algoritma K-NN. Journal of Information Technology and Computer Science (JITeCS), 7(2), 211–222. https://doi.org/10.25126/jitecs.2022.7212

Rosyani, P., & Pratama, H. (2024). Penggunaan attention mechanism dalam convolutional neural network untuk klasifikasi teks multidomain. Journal of Artificial Intelligence Research (JAIR), 6(1), 88–99. https://doi.org/10.16194/jair.v6i1.345

Rosyani, P., & Sari, Y. (2021). Analisis sentimen ulasan film menggunakan metode convolutional neural network (CNN) dengan word embedding GloVe. Jurnal Ilmiah Teknologi Informasi, 15(2), 45-56. https://doi.org/10.25126/jti.2021.152.123

Rosyani, P., & Septyan, R. (2021). Klasifikasi berita hoax menggunakan metode deep learning dengan pretrained model BERT. Journal of Intelligent Systems and Data Science (JISD), 2(1), 34–45. https://doi.org/10.35912/jisd.v2i1.567

Rosyani, P., & Wijaya, A. (2023). Optimasi hyperparameter pada model deep learning untuk analisis sentimen ulasan produk e-commerce. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 112–125. https://doi.org/10.59934/jaiea.v4i2.89

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS), 30, 5998–6008.

Wang, J., Yu, L., Lai, K. R., & Zhang, X. (2020). Tree-structured regional CNN-LSTM model for dimensional sentiment analysis. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 581–591. https://doi.org/10.1109/TASLP.2019.2959251

Wang, Y., Huang, M., Zhu, X., & Zhao, L. (2020). Attention-based LSTM for aspect-level sentiment classification. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 3428–3437. https://doi.org/10.18653/v1/2020.emnlp-main.276

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention networks for document classification. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 1480–1489. https://doi.org/10.18653/v1/N16-1174

Zhang, L., Wang, S., & Liu, B. (2023). Gated TextCNN with adaptive pooling for sentiment analysis of short texts. Information Processing & Management, 60(2), 103245. https://doi.org/10.1016/j.ipm.2022.103245

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. Advances in Neural Information Processing Systems (NeurIPS), 28, 649–657.

Zhang, Y., & Wallace, B. C. (2017). A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification. Proceedings of the 8th International Joint Conference on Natural Language Processing (IJCNLP), 253–263.

Published

2026-01-08

How to Cite

Rahmat Hidayat, Nur Laelasari, Adam Bahtiar, Rizky Hermawan, & Perani Rosyani. (2026). Enhanced TextCNN dengan Gated Mechanism dan Aspect Fusion untuk Klasifikasi Rating Film Berdasarkan Ulasan Pengguna . BINER : Jurnal Ilmu Komputer, Teknik Dan Multimedia, 3(5), 560–569. Retrieved from https://journal.mediapublikasi.id/index.php/Biner/article/view/5941

Similar Articles

<< < 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.