Literature Review : Implementasi Algoritma K-Means Clustering Dalam Berbagai Sektor
Keywords:
Implementasi K-Means Clustering, Machine Learning, Pengambilan KeputusanAbstract
K-Means Clustering is a crucial machine learning algorithm that plays a significant role in modern data analysis and information processing. This research aims to examine the application of K-Means Clustering through a systematic review of scientific journals. The literature study explores the implementation of K-Means in four different fields: public health, education, marketing, and agriculture. The research methodology employed a comparative analysis of published journals, focusing on methodologies, results, and practical implications of clustering algorithm usage. The findings demonstrate that K-Means possesses high flexibility in identifying patterns and supporting cross-domain decision-making processes.
References
Al Masykur, A., Gusti, S.K., Sanjaya, S., Yanto, F., & Syafria, F. (2023). Penerapan Metode K-Means Clustering untuk Pemetaan Pengelompokan Lahan Produksi Tandan Buah Segar. Jurnal Informatika.
Baiq Nikum Yulisasih, Herman, H., & Sunardi, S. (2024). K-Means Clustering Method For Customer Segmentation Based On Potential Purchases. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi Dan Komputer, 8(1), 83–90. https://doi.org/10.31961/eltikom.v8i1.1137
Mahmudan, A. (2020). Clustering of District or City in Central Java Based COVID-19 Case Using K-Means Clustering. Jurnal Matematika, Statistika Dan Komputasi, 17(1), 1–13. https://doi.org/10.20956/jmsk.v17i1.10727
Pusvitaningrum, Ika. (2020). Analisis Data Argumen Tentang Penerapan Kebijakan Sistem Zonasi Pada Pendaftaran Sekolah Dengan Menggunakan K-Means Clustering. Jurnal Buana Informatika. 11. 1. 10.24002/jbi.v11i2.3575.
Sari, Nofita & Hikmayanti, Hanny & Siregar, Amril. (2023). Implementasi Clustering Data Kasus Covid 19 Di Indonesia Menggunakan Algoritma K-Means. Bianglala Informatika. 11. 7-12. 10.31294/bi.v11i1.14762.