Efektivitas Peran Keamanan Jaringan Dalam Melindungi Data Perusahaan Dari Ancaman Serangan Siber
Keywords:
Keamanan Jaringan, Naive Bayes, IPS, Serangan Siber, Data PerusahaanAbstract
This study aims to evaluate the effectiveness of network security in protecting company data from cyber threats. The methods used in this research include Gaussian Naive Bayes, Bernoulli Naive Bayes, and Multinomial Naive Bayes. The data analyzed are Fortigate firewall logs from the Intrusion Prevention System (IPS), recording threat activities against PT Nusa Network Prakarsa”s network. Data were collected from January to February 2024, encompassing 43,184 entries containing information on Source and Destination IP addresses, Severity levels, ports, origin countries, attacked Services, and types of malware or viruses. The preprocessing steps included Data Cleaning, Label Encoding, and Feature Selection. The results showed that the Gaussian Naive Bayes model with k = 6 provided the best performance with an accuracy of 0.709. The best features used in this model included “Source IP”, “Destination IP”, “Severity”, “Destination Port”, “Service”, and “Name Malware/Virus”. This accuracy is higher than the average cross-validation value of 0.707. Although there is variation in performance across classes, overall, the model successfully provided reasonably good predictions. This research concludes that using Naive Bayes algorithms is effective in detecting and preventing cyber attacks, thereby enhancing company data security.
References
Anas, I., & Zakir, S. (2024). Artificial Intelligence: Solusi Pembelajaran Era Digital 5.0. Jurnal Sains Komputer & Informatika (J-SAKTI, 8(1), 35–46.
Ashari, H., Arifianto, D., Azizah, H., & Faruq, A. (2020). Kinerja Algoritma Multinomial Naïve Bayes (Mnb), Multivariate Bernoulli Dan Rocchio Algorithm Dalam Klasifikasi Konten Berita Hoax Berbahasa Indonesia Dengan Jupyter Notebook. Jurnal Aplikasi Sistem Informasi Dan Elektronika, 2(2), 52–65.
Cataldi, L., Tiberi, L., & Costa, G. (2021). Estimation of MCS intensity for Italy from high quality accelerometric data, using GMICEs and Gaussian Naïve Bayes Classifiers. Bulletin of Earthquake Engineering, 19(6), 2325–2342. https://doi.org/10.1007/s10518-021-01064-6
CISCO. (2023). Security Outcomes Report - Achieving Security Resilience. Cisco. https://www.cisco.com/c/en/us/products/security/cybersecurity-reports.html
Ernianti Hasibuan, & Heriyanto, E. A. (2022). Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier. Jurnal Teknik Dan Science, 1(3), 13–24. https://doi.org/10.56127/jts.v1i3.434
Fatkhurohman, A., & Pujastuti, E. (2019). Penerapan Algoritma Naïve Bayes Classifier Untuk Meningkatkan Keamanan Data Dari Website Phising. Respati, 14(1). https://doi.org/10.35842/jtir.v14i1.279
Fuadah, Y. N., Ubaidullah, I. D., Ibrahim, N., Taliningsing, F. F., Sy, N. K., & Pramuditho, M. A. (2022). Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(3), 728. https://doi.org/10.26760/elkomika.v10i3.728
Kurniawan, F. (2023). Analisis Pengaruh Seleksi Fitur Anova Terhadap Performa Model Klasifikasi Gaussian Naïve Bayes Pada Dataset Pima Indians Diabetes.
Putro, H. F., Vulandari, R. T., & Saptomo, W. L. Y. (2020). Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 8(2). https://doi.org/10.30646/tikomsin.v8i2.500
Umar, N., & M. Adnan Nur. (2022). Application of Naïve Bayes Algorithm Variations On Indonesian General Analysis Dataset for Sentiment Analysis. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(4), 585–590. https://doi.org/10.29207/resti.v6i4.4179
Yati, J. D., Pamungkas, E. W., Kom, S., & Kom, M. (2023). Hate Speech Detection On Social Media Content In Javanese Language With Naive Bayes Algorithm. Eprints.Ums.Ac.Id. https://eprints.ums.ac.id/id/eprint/112433%0Ahttps://eprints.ums.ac.id/112433/5/NaskahPublikasi.pdf