Analisis Dan Perancangan Sistem Informasi Penjualan Pakaian Dengan Metode Algoritma Apriori (Studi Kasus : Anxious Creation Store)
Keywords:
Analisis dan Perancangan Sistem, Data Mining, Algoritma Apriori, Sistem Aplikasi PenjualanAbstract
One of the reasons for not optimal sales in various business fields is due to the lack of data utilization. Therefore an application is needed that can analyze and process large amounts of data sets to provide an overview of the interrelationships between goods by analyzing sales transaction data, so that users can use the information from the data processing results for marketing strategies to increase sales. By using data mining methods, namely market basket analysis and a priori algorithm, produce association rules that show patterns of consumer buyers and how strong an item affects other items. The use of this algorithm will provide knowledge to users in the form or pattern of sales that occur. From the results of analysis and testing, system trials have been carried out using sales transaction data totaling 87 transactions during the period January 2022-March 2022 by changing the minimum support and minimum confidence parameters, it can be concluded that one of the item combinations that can be made for the promotion development process into a package is if consumers buy Nordic then 36.84% (consumer certainty in buying items) will buy Anubis. This information can be useful for increasing sales by knowing which product categories are frequently purchased by consumers, so that the store can make business decisions such as marketing strategies by making recommendations on package efforts to increase sales.
References
Astuti, T., & Puspita, B. (2020). Analysis of Customer Transaction Data Associations Based on The Apriori Algorithm. International Journal of Informatics and Information Systems, 3(1), 23-28.
Destiyati, O. S. A., & Aribowo, E. (2019). Analisis Perbandingan Algoritma Apriori Dan Algoritma Hash Based Pada Market Basket Analysis Di Apotek UAD. J. Sarj. Tek. Inform, 3(1), 1-10.
Fuady, Z., & Sasongko, P. S. Aplikasi Data Mining Menggunakan Algoritma Apriori Untuk Analisis Pola Penjualan (Studi Kasus: Apotek Keluargku Semarang). Jurnal Masyarakat Informatika, 9(1), 34-39.
Mulyani, H. (2018). Implementasi Algoritma Apriori Pada Transaksi Penjualan Barang (Studi Kasus: Toko Isna Kabupaten Bintan). Jurnal Bangkit Indonesia, 7(1), 15-15.
Nadilla, C. J., & Razaq, J. A. (2020). Analisa Penjualan Makanan Minuman Menggunakan Kaidah Asosiasi Dengan Algoritma Apriori (Studi Kasus: Restoran LA Steak Semarang).
Pranata, N. (2022). Klasifikasi Sentimen Terhadap Maxim Menggunakan Algoritma SVM Pada Media Sosial Twitter. Klasifikasi Sentimen Terhadap Maxim Menggunakan Algoritma SVM Pada Media Sosial Twitter, 5(3), 332-341.
Prasetya, A., Andriana, S., & Komalasari, R. T. (2021). Rancang Bangun Inventarisasi Barang menggunakan Algoritma Apriori Sebagai Data Mining. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 5(4), 354-361.
Rifat, N. (2020). Perancangan Sistem Aplikasi Data Mining Menggunakan Algoritma Apriori untuk Analisis Pola Penjualan Pakaian Pada PT. RECLAYS. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 4(3), 152-221.
Safii, M., & Damanik, B. E. (2020). Implementasi Algoritma Apriori Pada Sistem Persediaan Barang. JIKO (Jurnal Informatika dan Komputer), 3(3), 173-180.