Prediksi Cabang Primagama Bermasalah Menggunakan Algorima C4.5
Keywords:
Tutoring, Algorithm C4.5, Decission Tree, Data MiningAbstract
Primagama is one of indonesia largest site preparation hundreds of branches across the country.The number of branches, the audit should investigate the branches and identify troubled bermasalah.cabang branches which are to be avoided by companies to reach its profit goal the company and preventing the regulation made the turn.But the problem is a lot, and it takes time to choose a branch of the audit problems there.This study apply c4.5 to find the decision and the accuracy of a unique dataset obtained.The result of accuracy c4.5 % 98,60 reached in this research.The accuracy is expected to made new predictions kebijakan kebijakan related to the problem.
References
Adriana, I. A. (2007). Penalaran Komputer Berbasis Kasus (Case Based Reasoning). Yogyakarta: Ardana Media.
Al-Kabi, M. N., Kanaan, G., Al-Shalabi, R., Al-Sinjilawi, S., & Al-Mustafa, R. (2005). Al-Hadith Text Classifier. Journal of Applied Sciences 5, 584-587.
Andina Kusumaningrum, Said Al-Faraby, & Adiwijaya. (2017). Klasifikasi Informasi, Anjuran dan Larangan pada Hadits Shahih Bukhari menggunakan Metode Support Vector Machine. e-Proceeding of Engineering, 5014.
Asriyanti Indah Pratiwi, & Adiwijaya. (2018). On the Feature Selection and Classification Based on Information Gain for Document Sentiment Analysis. Applied Computational Intelligence and Soft Computing, 2018, 5. doi:https://doi.org/10.1155/2018/1407817
Desiani, A., & Arhami, M. (2006). Konsep Kecerdasan Buatan (1 ed.). (D. Hardjono, Penyunt.) Yogyakarta, Indonesia: Penerbit ANDI.
Desiani, A., & Arhami, M. (2006). Konsep Kecerdasan Buatan (1 ed.). (D. Hardjono, Penyunt.) Yogyakarta, Indonesia: Penerbit ANDI.
Eliza Riviera Rachmawati Jasin, Said Al-Faraby, & Adiwijaya. (2017). Klasifikasi Anjuran, Larangan dan Informasi pada Hadis Sahih Al-Bukhari. e-Proceeding of Engineering, 4683.
Faza Akmal, S. W. (Februari 2014). SISTEM PPAKAR UNTUK MENDIAGNOSA PENYAKIT LAMBUNG DENGAN IMPLEMENTASI METODE CBR (CASE BASED REASONING) BERBASIS WEB. Jurnal Sarjana Teknik Informatika, 2 (1).
Haza Nuzly Abdull Hamed, Siti Mariyam Shamsuddin, & Naomie Salim. (2008). Particle Swarm Optimization For Neural Network Learning Enchancement. Jurnal Teknologi, 13-26.
Kusrini. (2006). Sistem Pakar Teori dan Aplikasi (1 ed.). (f. Suyantoro, Penyunt.) Yogyakarta, Indonesia: Penerbit ANDI.
M.L. Zhang, & Z. H. Zhou. (2006). Multilabel neural networks with applications to functional genomics and text. IEEE transactions on Knowledge and Data Engineering, 1338-1351.
Nurcahyo, S. a. (2014). Rainfall Prediction in Kemayoran Jakarta Using Hybrid Genetic Algorithm (GA) and Partially Connected Feedforward Neural Network (PCFNN). Information and Communication Technology (ICoICT), (pp. 166-171).
Raharjo, J. S. (2013). Model Artificial Neural Network berbasis Particle Swarm Optimization untuk Prediksi Laju Inflasi. Sistem Komputer.
Reynaldi Ananda Pane, M. S. (2018). A Multi-lable Classification on Topics of Quranic Verses in English Translation using Multinomial Naive Bayes. 6th International Conference on Information and Communication Technology (ICoICT).
staff, I. (2017). Cabang Aktif. Jakarta: Prmagama.
T.Sutojo, E. M. (2011). Kecerdasan Buatan. Yogyakarta: Andi.