Analisis Peramalan Produksi Crude Palm Oil (CPO) Dengan Pendekatan Model Arima (Autoregresif Integrated Moving Average) Di PT Perkebunan Nusantara IV Regional 7 KSO

Authors

  • Muhamad Alfajar Universitas Lampung
  • Rr Erlina Universitas Lampung
  • Dwi Asri Siti Ambarwati Universitas Lampung

Keywords:

Peramalan Produksi, Crude Palm Oil, ARIMA, EViews, Deret Waktu

Abstract

Crude Palm Oil (CPO) production forecasting is an important element in supply chain management and company strategic planning. This study aims to forecast CPO production at PT Perkebunan Nusantara IV Regional 7 KSO using the Autoregressive Integrated Moving Average (ARIMA) method. Historical data of CPO production from 2017 to 2025 was analyzed using EViews 12 software. The analysis begins with data stationarity testing using the Augmented Dickey-Fuller (ADF) test. The selection of the optimal ARIMA model is determined based on the small Akaike Information Criterion (AIC), Schwarz Criterion (SC), and large R-squared values. After identifying and estimating the model, it is found that the ARIMA (1,0,0) model is the best model that can be used to forecast CPO production. This model has been tested with the Lijung-Box Test and White Noise Test, which shows that the residuals are random, so it is valid for forecasting.The forecasting results show a pattern of fluctuations in CPO production from year to year, with an increase in production in certain periods. This forecasting is expected to be a reference for companies in preparing the Company's Work Plan and Budget (RKAP) and optimizing production strategies to deal with changes in demand.

References

Arikunto, Suharsimi. (2013). Prosedur Penelitian: Suatu Pendekatan Praktik. Rineka Cipta.

Bambang Hendrawan. (2012). Penerapan Model ARIMA Dalam Memprediksi IHSG. Jurnal Integrasi.

Br Bangun, & Rita Herawaty. (2017). Penerapan Autoregressive Integrated Moving Average (ARIMA) Pada Peramalan Produksi Kedelai Di Sumatera Utara. JURNAL AGRICA, 9(2), 90. https://doi.org/10.31289/agrica.v9i2.484

Buchori, M., & Sukmono, T. (2018). Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) di PT. XYZ. PROZIMA (Productivity, Optimization and Manufacturing System Engineering), 2(1), 27–33. https://doi.org/10.21070/prozima.v2i1.1290

Defiyanti, S., Nurina Sari, B., & Nur Padilah, T. (2024). Optimasi Pertanian Padi: Peramalan Curah Hujan Berbasis Arima Untuk Penentuan Waktu Tanam Yang Tepat. Jurnal Teknologi Informasi dan Ilmu Komputer, 11(6), 1377–1384. https://doi.org/10.25126/jtiik.1168682

ditjenbun. (2022, November 3). Kontribusi Minyak Kelapa Sawit Indonesia Mengatasi Krisis Pangan Global. https://ditjenbun.pertanian.go.id/.

Djawoto, D. (2018). PERAMALAN LAJU INFLASI DENGAN METODE AUTO REGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA). EKUITAS (Jurnal Ekonomi dan Keuangan), 14(4), 524–538. https://doi.org/10.24034/j25485024.y2010.v14.i4.176

E. Wood Buffa. (1989). Manajemen Produksi dan Operasi (6 ed., Vol. 2). Erlangga.

Gasperz, V. (2005). Total Quality Management. PT Gramedia Pustaka Utama.

Greene, W. H. (2012). Econometric Analysis (7th ed.) (7 ed.). Pearson Education.

Gujarati, D. N. , & Porter, D. C. (2009). Basic Econometrics (5th ed.) (5 ed.). McGraw-Hill.

Hafni Sahir, S. (2021). Metodologi Penelitian. www.penerbitbukumurah.com

Handoko, H. (2020). Dasar-dasar manajemen produksi dan operasai.

Hanke, J. E. , & W. D. W. (2009). Business Forecasting (9 ed.). Business Forecasting (9th ed.). Pearson Prentice Hall.

Heizer, J. , & R. B. (2015). Manajemen Operasi (11 ed.). Salemba Empat.

Julyanthry, J., Siagian, V., Asmeati, A., Hasibuan, A., Simanullang, R., Pandarangga, A. P., Purba, S., Purba, B., Ferinia, R., & Rahmadana, M. F. (2020). Manajemen Produksi dan Operasi. Yayasan Kita Menulis.

Lutfiah Abdullah, S., Fadliyah Akbariyah, A., Wikansari, R., & App, P. (2024). POTENSI EKSPOR CRUDE PALM OIL (CPO) DI INDONESIA. Dalam Journal of Science and Social Research (Nomor 1). http://jurnal.goretanpena.com/index.php/JSSR

Makridakis, S. , Wheelwright, S. C. , & McGee, V. E. (1995). Metode dan Aplikasi Peramalan.

Nurhanisah, Y. (2023, Februari 28). Indonesia Produsen Minyak Sawit Terbesar Dunia. https://indonesiabaik.id/.

Parlinsa Elvani, S., Rachma Utary, A., & Yudaruddin, R. (2016). PERAMALAN JUMLAH PRODUKSI TANAMAN KELAPA SAWIT DENGAN MENGGUNAKAN METODE ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE). JURNAL MANAJEMEN, 8(1). http://journal.feb.unmul.ac.id

Ramadhani, F., Sukiyono, K., & Suryanty, M. (2020). Forecasting of Paddy Grain and Rice’s Price: An ARIMA (Autoregressive Integrated Moving Average) Model Application. SOCA: Jurnal Sosial, Ekonomi Pertanian, 14(2), 224. https://doi.org/10.24843/SOCA.2020.v14.i02.p04

Sendy Parlinsa Elvani, Anis Rachma Utary, & Rizky Yudaruddin. (2016). Peramalan jumlah produksi tanaman kelapa sawit dengan menggunakan metode ARIMA (Autoregressive Integrated Moving Average). Jurnal Manajemen, 95–112.

Utama, R. (2019). Manajemen Operasi. UN Jakarta Press.

Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods.

Winarno, W. W. (2009). Analisis Ekonometrika dan Statistika dengan EViews.

Published

2025-06-20

How to Cite

Alfajar, M., Erlina, R., & Asri Siti Ambarwati, D. (2025). Analisis Peramalan Produksi Crude Palm Oil (CPO) Dengan Pendekatan Model Arima (Autoregresif Integrated Moving Average) Di PT Perkebunan Nusantara IV Regional 7 KSO . Jurnal Manajemen, Ekonomi, Hukum, Kewirausahaan, Kesehatan, Pendidikan Dan Informatika (MANEKIN), 3(4 : Juni), 249–260. Retrieved from https://journal.mediapublikasi.id/index.php/manekin/article/view/5373

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.