Artificial-Intelligence Aerodynamics for Efficient Energy Systems: The Focus on Wind Turbines

Authors

  • Sheharyar Nasir Doctoral Student, Department of Aerospace Engineering, University of Kansas, Lawrence, KS, 66045
  • Hira Zainab Department of Information Technology Institute: American National University
  • Hafiz Khawar Hussain DePaul University Chicago, Illinois,USA

Keywords:

Artificial intelligence, wind energy, turbine control, machine learning, fluid dynamics, prognostic and health monitoring, real-time control, wind farm efficiency, energy prognosis, sustainable resources

Abstract

The incorporation of AI in wind energy systems has transformed the design, operation and management of wind turbines, wind farms increasing their effectiveness, resilience and viability. This paper explores the transformative impact of AI-driven technologies across various aspects of wind energy, focusing on five key areas: Lear two main areas: in turbine engineering, advanced concepts such as fluid dynamics and blade design, while in computer sciences, major components consist of machine learning for performance assessment of turbines, monitoring of turbines on real-time basis as well as for the purpose of maintenance, and optimization of wind farms. In the specific application of improving the efficiency of turbine blade design and function, AI continues to be useful as machine learning is used in creating new and more efficient and long lasting blades while dynamic real time monitoring systems are used in making adjustments based on external conditions. AI-based predictive maintenance enables for mechanical problems identification before they evolve, thus decreasing the time a machine spends out of service and operational expenses. Also, AI enhances the design of wind farm, control of wake and load balance to enhance efficiency of wind electricity generation. It allows for a more effective intro of energy into the larger grid and hydrates therefore increasing the availability of renewable energy with stability. Based on this paper, the future of AI remains evident in future enhancement of wind energy systems, hence guaranteeing sustainable energy, efficiency, and cost-effectiveness in energy solutions for the overall energy transformation.

References

Firoozi, A. A., Hejazi, F., & Firoozi, A. A. (2024). Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design. Energies, 17(12), 2919.

Zou, Z., Xu, P., Chen, Y., Yao, L., & Fu, C. (2024). Application of artificial intelligence in turbomachinery aerodynamics: progresses and challenges. Artificial Intelligence Review, 57(8), 222.

Ghahfarrokhi, M. A., & Samaei, S. R. Using artificial intelligence capabilities to design and optimize smart offshore wind turbines.

Udo, W. S., Kwakye, J. M., Ekechukwu, D. E., & Ogundipe, O. B. (2024). Optimizing wind energy systems using machine learning for predictive maintenance and efficiency enhancement. Journal of Renewable Energy Technology, 28(3), 312-330.

Syed Ahmed Kabir, I. F., Gajendran, M. K., Taslim, P. M. P., Boopathy, S. R., Ng, E. Y. K., & Mehdizadeh, A. (2024). An XAI Framework for Predicting Wind Turbine Power under Rainy Conditions Developed Using CFD Simulations. Atmosphere, 15(8), 929.

Ahmad, I., M’zoughi, F., Aboutalebi, P., Garrido, A. J., & Garrido, I. (2024). Advancing Offshore Renewable Energy: Integrative Approaches in Floating Offshore Wind Turbine-Oscillating Water Column Systems Using Artificial Intelligence-Driven Regressive Modeling and Proportional-Integral-Derivative Control. Journal of Marine Science and Engineering, 12(8), 1292.

Ganapathisubramani B, Longmire EK, Marusic I et al (2005) Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer. Exp Fluids 39(2):222–231. https:// doi.org/10.1007/s00348-005-1019-z

Ghosh S, Anantha Padmanabha G, Peng C et al (2021) Inverse aerodynamic design of gas turbine blades using probabilistic machine learning. J Mech Des doi 10(1115/1):4052301 Goldberg DE (1994) Genetic and evolutionary algorithms come of age. Commun ACM 37(3):113–119. https://doi.org/10.1145/175247.175259

Greitzer EM (1981) the stability of pumping systems-the 1980 freeman scholar lecture. J Fluids Eng 103(2):193–242. https://doi.org/10.1115/1.3241725

Gubran AA, Sinha JK (2014) Shaft instantaneous angular speed for blade vibration in rotating machine. Mech Syst Signal Proc 44(1):47–59. https://doi.org/10.1016/j.ymssp.2013.02.005

Haarnoja T, Zhou A, Hartikainen K et al (2019) Soft actor-critic algorithms and applications. Preprint at http://arxiv.org/abs/1812.05905

Hartigan JA, Wong MA (1979) A K-means clustering algorithm. J Royal Stat Soc: Ser C (Appl Stat) 28(1):100–108. https://doi.org/10.2307/2346830

He X, Zhao F, Vahdati M (2020) Uncertainty quantifcation of Spalart-Allmaras turbulence model coeffcients for simplifed compressor fow features. J Fluids Eng 142(9):081007. https://doi.org/10. 1115/1.4047026

He Q, Zhao W, Chi Z et al (2022a) Application of deep-learning method in the conjugate heat transfer optimization of full-coverage flm cooling on turbine vanes. Int J Heat Mass Trans 195:123148. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123148

He X, Zhao F, Vahdati M (2022b) A turbo-oriented data-driven modifcation to the Spalart-Allmaras turbulence model. J Turbomach 144(12):121007. https://doi.org/10.1115/1.4055333

Hey T (2009) The fourth paradigm. Microsoft Research, Redmond Hinsch KD (2002) Holographic particle image velocimetry. Meas Sci Technol 13(7):R61. https://doi.org/10. 1088/0957-0233/13/7/201

Hipple SM, Bonilla-Alvarado H, Pezzini P et al (2020) Using machine learning tools to predict compressor stall. J Energy Resour Technol. https://doi.org/10.1115/1.4046458

Hirsch C, Tartinville B (2009) Reynolds-averaged Navier-Stokes modelling for industrial applications and some challenging issues. Int J Comput Fluid Dyn 23(4):295–303. https://doi.org/10.1080/10618 560902773379

Hobbs DE, Weingold HD (1984) Development of controlled difusion airfoils for multistage compressor application. J Eng Gas Turb Power 106(2):271–278. https://doi.org/10.1115/1.3239559

Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441. https://doi.org/10.1037/h0071325

Hu H, Song Y, Yu J et al (2022) The application of support vector regression and virtual sample generation technique in the optimization design of transonic compressor. Aerosp Sci Technol 130:107814. https://doi.org/10.1016/j.ast.2022.107814

Huang X, Zhang X, Xiong Y et al (2021) A novel intelligent fault diagnosis approach for early cracks of turbine blades via improved deep belief network using three-dimensional blade tip clearance. IEEE Access 9:13039–13051. https://doi.org/10.1109/ACCESS.2021.3052217

Jaeger BE, Schmid S, Grosse CU et al (2022) Infrared thermal imaging-based turbine blade crack classifcation using deep learning. J Nondestruct Eval 41(4):74. https://doi.org/10.1007/s10921-022-00907-9

Jameson A, Martinelli L (2000) Aerodynamic shape optimization techniques based on control theory. In: Burkard RE, Jameson A (eds) Computational mathematics driven by industrial problems. Springer, Berlin, Heidelberg, pp 151–221. https://doi.org/10.1007/BFb0103920

Jiang K, Xiang Y, Chen T et al (2020) Research on surge control of centrifugal compressor based on reinforcement learning. In: Ball A, Gelman L, Rao BKN (eds) Advances in asset management and condition monitoring. Springer International Publishing, Cham, pp 293–305. https://doi.org/10.1007/978- 3-030-57745-2_25

Jiang P, Ergu D, Liu F et al (2022) A review of yolo algorithm developments. Proc Comput Sci 199:1066– 1073. https://doi.org/10.1016/j.procs.2022.01.135

Application of artifcial intelligence in turbomachinery… 1 3 Page 41 of 46 222 Jones WP, Launder BE (1972) the prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Trans 15(2):301–314. https://doi.org/10.1016/0017-9310(72)90076-2

Kacker SC, Okapuu U (1982) Mean line prediction method for axial fow turbine efciency. J Eng Power 104(1):111–119. https://doi.org/10.1115/1.3227240

Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440. https://doi.org/10.1038/s42254-021-00314-5

Kashef A, Rempe D, Guibas LJ (2021) A point-cloud deep learning framework for prediction of fuid fow felds on irregular geometries. Phys Fluids 33(2):027104. https://doi.org/10.1063/5.0033376

Keane AJ, Voutchkov II (2022) Embedded parameter information in conditional generative adversarial networks for compressor airfoil design. AIAA J 10(2514/1):J061544

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - international conference on neural networks, pp 1942–1948, https://doi.org/10.1109/ICNN.1995.488968

Kidikian J, Badrieh C, Reggio M (2021) Mathematical model to describe double circular arc and multiple circular arc compressor blading profles. In: Proceedings of the ASME Turbo Expo 2021: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, p V02CT34A018, https://doi.org/10.1115/GT2021-59238

Kim YH, Lee JR (2019) Videoscope-based inspection of turbofan engine blades using convolutional neural networks and image processing. Struct Health Monitor 18(5–6):2020–2039. https://doi.org/10.1177/ 1475921719830328. (publisher: SAGE Publications)

Kim J, Choi J, Husain A et al (2010) Multi-objective optimization of a centrifugal compressor impeller through evolutionary algorithms. Proc Inst Mech Eng Part A: J Power Eng 224(5):711–721. https://doi.org/10.1243/09576509JPE884

Kim J, Kim J, Kim K (2011) Axial-fow ventilation fan design through multi-objective optimization to enhance aerodynamic performance. J Fluids Eng 133(10):101101. https://doi.org/10.1115/1.40049

Kirkpatrick J, Pascanu R, Rabinowitz N et al (2017) Overcoming catastrophic forgetting in neural networks. Proc Natl Acad Sci 114(13):3521–3526. https://doi.org/10.1073/pnas.1611835114

Koch CC, Smith LH (1976) Loss sources and magnitudes in axial-fow compressors. J Eng Power 98(3):411. https://doi.org/10.1115/1.3446202

Kochkov D, Smith JA, Alieva A et al (2021) Machine learning-accelerated computational fuid dynamics. Proc Natl Acad Sci 118(21):e2101784118. https://doi.org/10.1073/pnas.2101784118

Köller U, Mönig R, Küsters B et al (1999) Development of advanced compressor airfoils for heavy-duty gas turbines: part i - design and optimization. In: Proceedings of the ASME turbo expo 1999: power for land, sea, and air. American Society of Mechanical Engineers, New York, USA, p V001T03A021, https://doi.org/10.1115/99-GT-095

Kosowski K, Tucki K, Kosowski A (2009) Application of artifcial neural networks in investigations of steam turbine cascades. J Turbomach 10(1115/1):3103923

Krain H, Hofman W (1989) Verifcation of an impeller design by laser measurements and 3D-viscous fow calculations. In: ASME. Turbo Expo 1989: power for land, sea, and air, 79139, p V001T01A064, https://doi.org/10.1115/89-GT-159

Launder BE, Spalding DB (1974) the numerical computation of turbulent fows. Comput Meth Appl Mech Eng 3(2):269–289. https://doi.org/10.1016/0045-7825(74)90029-2

LeCun Y, Boser B, Denker JS et al (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551. https://doi.org/10.1162/neco.1989.1.4.541

Lee S, Kim K (2000) Design optimization of axial fow compressor blades with three-dimensional Navier-Stokes solver. KSME Int J 14(9):1005–1012. https://doi.org/10.1007/BF03185803

Lee KB, Wilson M, Vahdati M (2018) Validation of a numerical model for predicting stalled fows in a low-speed fan-part I: modifcation of Spalart-Allmaras turbulence model. J Turbomach 140(5):051008. https://doi.org/10.1115/1.4039051

Li J, Feng Z, Chang J et al (1997) Aerodynamic optimum design of transonic turbine cascades using Genetic Algorithms. J Therm Sci 6(2):111–116. https://doi.org/10.1007/s11630-997-0024-3

Li C, Lei Y, Fu R (2011) Aerodynamic instability detection in compressor based on Hilbert-Huang transform. In: 2011 IEEE international conference on computer science and automation engineering, pp 355–358, https://doi.org/10.1109/CSAE.2011.5952867

Li X, Liu Z, Zhao Y (2022a) Redesign of casing treatment for a transonic centrifugal compressor based on a hybrid global optimization method. Proc Inst Mech Eng, Part C: J Mech Eng Sci 236(7):3398–3417. https://doi.org/10.1177/09544062211039878 . (publisher: IMECHE)

Li X, Wang C, Ju H et al (2022b) Surface defect detection model for aero-engine components based on improved YOLOv5. Appl Sci 12(14):7235. https://doi.org/10.3390/app12147235

Z. Zou et al. 1 3 222 Page 42 of 46 Li J, Du X, Martins JRRA (2022c) Machine learning in aerodynamic shape optimization. Progress Aerosp Sci 134:100849. https://doi.org/10.1016/j.paerosci.2022.100849

Li J, Liu T, Wang Y et al (2022d) Integrated graph deep learning framework for fow feld reconstruction and performance prediction of turbomachinery. Energy 254:124440. https://doi.org/10.1016/j. energy.2022.124440

Li B, Xie H, Sun L et al (2024) Optimization design of radial infow turbine combined with mean-line model and CFD analysis for geothermal power generation. Energy 291:130452. https://doi.org/10. 1016/j.energy.2024.130452

Liang Y, Zou Z, Liu H et al (2015) Experimental investigation on the efects of wake passing frequency on boundary layer transition in high-lift low-pressure turbines. Exp Fluids 56(4):81. https://doi.org/10.1007/s00348-015-1947-1

Libeyre F, Bainier F, Alas P (2021) A comprehensive modeling of centrifugal compressor vibrations for early fault detection. In: Proceedings of the ASME turbo expo 2020: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, Virtual, Online, p V005T05A022, https://doi.org/10.1115/GT2020-15641

Lillicrap TP, Hunt JJ, Pritzel A et al (2019) Continuous control with deep reinforcement learning. Preprint http://arxiv.org/abs/1509.02971

Lin TY, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection. pp 936–944, https://doi.org/10.1109/CVPR.2017.106

Lin P, Wang M, Wang C et al (2019) Abrupt stall detection for axial compressors with non-uniform infow via deterministic learning. Neurocomputing 338:163–171. https://doi.org/10.1016/j.neucom.2019.02. 007

Ling J, Kurzawski A, Templeton J (2016) Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J Fluid Mech 807:155–166. https://doi.org/10.1017/jfm.2016.615

Liu Y, Chen J, Cheng J (2022) Mean line aerodynamic design of an axial compressor using a novel design approach based on reinforcement learning. Proc Inst Mech Eng Part G: J Aerosp Eng 236(12):2433– 2446. https://doi.org/10.1177/09544100211063115

Liu C, Zou Z, Xu P et al (2024) Development of helium turbine loss model based on knowledge transfer with neural network and its application on aerodynamic design. Energy 297:131327. https://doi.org/10.1016/j.energy.2024.131327

Longley JP (1988) Inlet distortion and compressor stability. University of Cambridge, London Lopez DI, Ghisu T, Shahpar S (2021) Global optimization of a transonic fan blade through AI-enabled active subspaces. J Turbomach 144(1):011013. https://doi.org/10.1115/1.4052136

Luo J, Xia Z, Liu F (2021) Robust design optimization considering inlet fow angle variations of a turbine cascade. Aerosp Sci Technol 116:106893. https://doi.org/10.1016/j.ast.2021.106893

Lv Q, Yu X, Ma H et al (2021) Applications of machine learning to reciprocating compressor fault diagnosis: a review. Processes 9:909. https://doi.org/10.3390/pr9060909

Maral H, Alpman E, Kavurmacıoğlu L et al (2019) A genetic algorithm based aerothermal optimization of tip carving for an axial turbine blade. Int J Heat Mass Tans 143:118419. https://doi.org/10.1016/j. ijheatmasstransfer.2019.07.069

Maynard KP, Trethewey M (2000) Blade and shaft crack detection using torsional vibration measurements part 1: feasibility studies. Noise Vib Worldw 31(11):9–15. https://doi.org/10.1260/0957456001 498723

Downloads

Published

2024-12-02

How to Cite

Nasir, S. ., Zainab, H., & Hussain, H. K. . (2024). Artificial-Intelligence Aerodynamics for Efficient Energy Systems: The Focus on Wind Turbines. BULLET : Jurnal Multidisiplin Ilmu, 3(5), 648–659. Retrieved from https://journal.mediapublikasi.id/index.php/bullet/article/view/4735