Harvesting Power from Thin Air: The Radiowave Revolution in Transforming Solar Cells into Energy Powerhouses
Keywords:
Keywords radio wave energy conversion, solar cells, energy harvesting, energy-efficient materials, wireless sensors, communication devices, sustainable energy, environmental effects, and technical advancement.Abstract
In the search for sustainable energy solutions, the revolutionary potential of radio wave energy conversion has come to light as a ray of hope. This study examines the multidimensional field of radio wave energy conversion, whereby a wide range of applications, such as solar cells, wireless sensors, communication devices, etc., are powered by ambient radio waves. The journey starts with an investigation of the Radio wave Revolution, which charts the development of radio wave energy conversion from a fledgling idea to a flourishing field ready to transform energy production. Mechanisms of Radio wave Energy Harvesting explains the complex procedures involved in converting radio waves into usable power and highlights the role of rectifiers, resonant circuits, and met materials as the conversion's main building blocks. By supplying continuous radio wave-generated electricity alongside solar energy, the revolutionary marriage of radio waves with solar cells increases the efficiency and operating hours of solar energy. By combining radio wave harvesting components, improvements in radio wave-integrated photovoltaic technology increase the potential of solar cells and provide a flexible answer to problems with energy production. These integrated systems improve dependability and energy yield by utilizing the complementary powers of sunlight and radio waves. By utilizing the latent energy existing in the environment, harvesting energy from ambient radio waves can be done sustainably. In radio wave-powered solar cells, the synergy between radio waves and solar cells is investigated, revealing a range of new applications ranging from Internet of Things (IoT) devices and remote monitoring systems to healthcare and smart cities. The complexity of radio wave energy conversion are highlighted by Challenges and Opportunities, which balance efficiency optimization with potential interference issues and environmental implications. The use of radio wave energy conversion responsibly is examined in Environmental Impacts & Considerations, which weighs its advantages against issues like electromagnetic interference and material waste. In the end, improvements in efficiency, integration, material science, and wireless power transmission are anticipated in the future prospects and technological development of radio wave energy conversion. Our shared commitment to a greener and more sustainable energy future is aligned with the transformative trajectory that the convergence of interdisciplinary synergies and educational initiatives promise. This essay provides a thorough investigation of radio wave energy conversion, illuminating its potential to change energy production, reshape industries, and promote a more resilient and sustainable global community.
References
Barrutia Barreto, I., Urquizo Maggia, J. A., & Acevedo, S. I. (2019). Criptomonedas y blockchain en el turismo como estrategia para reducir la pobreza. RETOS. Revista de Ciencias de la Administración y Economía, 9(18), 287-302.
Torres, S. A., Barreto, I. B., Maggia, J. A. U., & Gibaja, R. V. (2019). La administración pública y sentido de bienestar para el progreso. Religación: Revista de Ciencias Sociales y Humanidades, 4(17), 116-123.
Al-Bahrani, M., Gombos, Z. J., & Cree, A. (2018). The mechanical properties of functionalised MWCNT infused epoxy resin: A theoretical and experimental study. Int. J. Mech. Mechatronics Eng, 18, 76-86.
Al‐Bahrani, M., Majdi, H. S., Abed, A. M., & Cree, A. (2022). An innovated method to monitor the health condition of the thermoelectric cooling system using nanocomposite‐based CNTs. International Journal of Energy Research, 46(6), 7519-7528.
Al-Bahrani, M., & Cree, A. (2021). In situ detection of oil leakage by new self-sensing nanocomposite sensor containing MWCNTs. Applied Nanoscience, 11(9), 2433-2445
Mohammad, A., Mahjabeen, F., Tamzeed-Al-Alam, M., Bahadur, S., & Das, R. (2022). Photovoltaic Power plants: A Possible Solution for Growing Energy Needs of Remote Bangladesh. NeuroQuantology, 20(16), 1164.
Berka, M., Özkaya, U., Islam, T., El Ghzaoui, M., Varakumari, S., Das, S., & Mahdjoub, Z. (2023). A miniaturized folded square split ring resonator cell based dual band polarization insensitive metamaterial absorber for C-and Ku-band applications. Optical and Quantum Electronics, 55(8), 699.
Barrutia Barreto, I., Urquizo Maggia, J. A., & Acevedo, S. I. (2019). Cryptocurrencies and blockchain in tourism as a strategy to reduce poverty. RETOS. Revista de Ciencias de la Administración y Economía, 9(18), 287-302.
Mohammad, A., & Mahjabeen, F. (2023). Revolutionizing Solar Energy: The Impact of Artificial Intelligence on Photovoltaic Systems. International Journal of Multidisciplinary Sciences and Arts, 2(1).
Ghazaoui, Y., El Ghzaoui, M., Das, S., Phani Madhav, B. T., Islam, T., & Seddik, B. (2023). A Quad-Port Design of a Bow-Tie Shaped Slot loaded Wideband (24.2-30.8 GHz) MIMO Antenna Array for 26/28 GHz mm-Wave 5G NR n257/n258/n260 band Applications. Journal of Circuits, Systems and Computers.
Mohammad, A., & Mahjabeen, F. (2023). Revolutionizing Solar Energy with AI-Driven Enhancements in Photovoltaic Technology. BULLET: Jurnal Multidisiplin Ilmu, 2(4), 1031-1041.
Ramírez-Asís, E. H., Colichón-Chiscul, M. E., & Banutia-Barreto, I. (2020). Rendimiento académico como predictor de la remuneración de egresados en Administración, Perú. Revista Lasallista de Investigación, 17(2), 88-97.
Al-Abboodi, H., Fan, H., Mhmood, I. A., & Al-Bahrani, M. (2022). The dry sliding wear rate of a Fe-based amorphous coating prepared on mild steel by HVOF thermal spraying. Journal of Materials Research and Technology, 18, 1682-1691.
Perdomo, B., González, O., & Barrutia, I. (2020). Competencias digitales en docentes universitarios: una revisión sistemática de la literatura. EDMETIC, 9 (2), 92-115.
Babu, K. V., Sree, G. N. J., Islam, T., Das, S., Ghzaoui, M. E., & Saravanan, R. A. (2023). Performance Analysis of a Photonic Crystals Embedded Wideband (1.41–3.0 THz) Fractal MIMO Antenna Over SiO2 Substrate for Terahertz Band Applications. Silicon, 1-14.
Bahadur, S., Mondol, K., Mohammad, A., Mahjabeen, F., Al-Alam, T., & Bulbul Ahammed, M. (2022). Design and Implementation of Low Cost MPPT Solar Charge Controller.
M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin, ‘‘Wireless information-theoretic security,’’ IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2515–2534, Jun. 2008.
Kumar, A., Singh, S., & Al-Bahrani, M. (2022). Enhancement in power conversion efficiency and stability of perovskite solar cell by reducing trap states using trichloroacetic acid additive in anti-solvent. Surfaces and Interfaces, 34, 102341.
Barrutia Rodríguez, R. R., Barrutia Barreto, I., & Marín Velásquez, T. D. (2020). Germinación de semillas de Cinchona officinalis L. en tres tipos de suelos de Cajamarca, Perú. Revista Cubana de Ciencias Forestales, 8(1), 75-87.
Douhi, S., Islam, T., Saravanan, R. A., Eddiai, A., Das, S., & Cherkaoui, O. (2023). Design of a Flexible Rectangular Antenna Array with High Gain for RF Energy Harvesting and Wearable Devices.
Drapalik, M.; Schmid, J.; Kancsar, E.; Schlosser, V., Klinger, G. In International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada, Spain, 23–25 March 2010
Erel, S. Teknoloji 2008, 11, 233-237.
Zerbo, I.; Zoungrana, M.; Ser´e, A. D.; Ouedraogo, F.; Sam, R.; Zouma, B.; Zougmor´e, F. Revue des Energies Renouvelables 2011, 14, 517-532 (in French).
X. Li, R. Zhang, and L. Hanzo, ooperative Load Balancing in Hybrid Visible Light Communications and WiFi,IEEE Transactions on Communications, vol. 63, no. 4,pp. 1319329, April 2015
Abbas, E. F., Al-abady, A., Raja, V., AL-bonsrulah, H. A., & Al-Bahrani, M. (2022). Effect of air gap depth on Trombe wall system using computational fluid dynamics. International Journal of Low-Carbon Technologies, 17, 941-949.
J. Vučić, L. Fernández, C. Kottke, K. Habel, and K. Langer, ‘‘Implementation of a real-time DMT-based 100 Mbit/s visible-light link,’’ in Proc. 36th Eur. Conf. Exhibit. Opt. Commun., Sep. 2010, pp. 1–5, doi: 10.1109/ECOC.2010.5621171.
Barrutia Barreto, I., Acosta Roa, E. R., & Marín Velásquez, T. D. (2019). Producción científica de profesores en Universidades Peruanas: motivaciones y percepciones. Revista San Gregorio, (35), 70-80.
krishna Ch, M., Islam, T., Suguna, N., Kumari, S. V., Devi, R. D. H., & Das, S. (2023). A micro-scaled graphene-based wideband (0.57–1.02 THz) patch antenna for terahertz applications. Results in Optics, 100501.
Ansari, A., Islam, T., Rama Rao, S. V., Saravanan, A., Das, S., & Idrissi, N. A. (2023). A Broadband Microstrip 1 x 8 Magic-T Power Divider for ISM Band Array Antenna Applications.
Balamurugan, R. J., AL-bonsrulah, H. A., Raja, V., Kumar, L., Kannan, S. D., Madasamy, S. K., ... & Al-Bahrani, M. (2022). Design and Multiperspectivity based performance investigations of H-Darrieus vertical Axis wind turbine through computational fluid dynamics adopted with moving reference frame approaches. International Journal of Low-Carbon Technologies.
Barrutia, R. R. R., Barreto, I. B., & Velásquez, T. D. M. (2020). Germination of Cinchona officinalis L. seeds in three soils types of Cajamarca, Peru. Revista Cubana de Ciencias Forestales, 8(1), 75-87.
Barreto, I. B., Rocca, J. J. D., Córdova, R. S., & Narciso, P. M. (2021). Análisis cualitativo del nivel de satisfacción de la educación virtual en estudiantes universitarios en tiempos de pandemia. New Trends in Qualitative Research, 7, 220-228.
M. Hammouda, S. Akin, A. M. Vegni, H. Haas, and J. Peissig, ‘‘Link selection in hybrid RF/VLC systems under statistical queueing constraints,’’ IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2738–2754, Apr. 2018.
Al-Bahrani, M. (2019). The Manufacture and Testing of Self-Sensing CNTs Nanocomposites for Damage Detecting Applications (Doctoral dissertation, University of Plymouth).
Zerbo, I.; Zoungrana, M.; Ser´e, A. D.; Zougmor´e, F. IOP Conf. Ser. Mater. Sci. Eng. 2012, 29, 012019. [7] Ba, B.; Kane, M. Sol. Energ. Mat. Sol. C 1995, 37, 259-271.
Ba, B.; Kane, M.; Sarr, J. Sol. Energ. Mat. Sol. C 2003, 80, 143-154.
Dugas, J. Sol. Energ. Mat. Sol. C 1994, 32, 71-88.
Andr´e, M. Electronique et photo-´electronique des mat´eriaux et composants 2 photo-´electronique et composants ; Lavoisier: Paris, France, 2009 (in French).
U.suganya1, c.subhalakshmipriya, li-fi (light fidelity) technology, international journal of research in computer applications and robotics, vol.3 issue.1, pg.: 26-32 january 2015
Billy, N; Desbois, J.; Duval, M. A.; Elias, M.; Monceau, P.; Plaszczynski, A.; Toulmonde, M. CAPES de Sciences physiques, Tome 1-Physique, 3rd ed.; Belin: Paris, France, 2004 (in French).