Implementasi Perbandingan Metode Algoritma Support Vector Machine (SVM) DAN Naïve Bayes Untuk Menganalisa Pendapat Masyarakat Terkait Cyberbullying Diera Teknologi Digital Pada Aplikasi X
Keywords:
Support Vector Machine, Naïve Bayes, Cyberbullying, Teknologi DigitalAbstract
In the era of digital technology, technological advances have changed the way people interact, but have also increased cases of cyberbullying, especially among children and adolescents who use the X application. Cyberbullying perpetrators feel safe from direct consequences because of the anonymity of the internet. The Indonesian Psychological Practice Foundation (YAPI) is concerned about this problem and plans to develop an application to analyze public opinion about cyberbullying on social media X. This study aims to analyze public opinion using the Support Vector Machine (SVM) and Naïve Bayes Algorithms, and identify the most efficient and accurate methods in terms of speed and accuracy. Data from the X platform will be taken using Python, processed through preprocessing, and stored in a MySQL database. This study is expected to determine the superior method between SVM and Naïve Bayes, as well as provide a better understanding of preprocessing techniques in analyzing opinions on social media, thereby improving the quality and relevance of the analysis results.
References
Ernawati, A., Sari, A. O., Sofyan, S. N., Iqbal, M., & Wijaya, R. F. W. (2023). Implementasi Algoritma Naïve Bayes dalam Menganalisis Sentimen Review Pengguna Tokopedia pada Produk Kesehatan. Bulletin of Infile:///G:/My Drive/!TARGET 2024/REFERENSI/Sistem Informasi Aplikasi Penentuan Jurusan Yang Sesuai Dengan Minat Menggunakan Pendekatan Fuzzy Sugeno.pdfformation Technology (BIT), 4(4), 533–543. https://doi.org/10.47065/bit.v4i4.1090
Fatmawati, F., & Narti, N. (2022). Perbandingan Algoritma C4.5 dan Naive Bayes Dalam Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Daring. JTIM : Jurnal Teknologi Informasi dan Multimedia, 4(1), 1–12. https://doi.org/10.35746/jtim.v4i1.196
Fitriani, E. (2020). Perbandingan Algoritma C4.5 Dan Naïve Bayes Untuk Menentukan Kelayakan Penerima Bantuan Program Keluarga Harapan. Sistemasi, 9(1), 103. https://doi.org/10.32520/stmsi.v9i1.596
Haqmanullah Pambudi, R., & Darma Setiawan, B. (2018). Penerapan Algoritma C4.5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(7), 2637–2643. http://j-ptiik.ub.ac.id
Ika, N., Kalingara, P., Pratiwi, O. N., & Anggana, H. D. (2021). Analisis Sentimen Review Customer Terhadap Layanan Ekspedisi Jne Dan J & T Express Menggunakan Metode Naïve Bayes Sentiment Analysis Review Customer of Jne and J & T Express Expedition Services Using Naïve Bayes Method. e-Proceeding of Engineering, 8(5), 9035–9048.
Prast, T. P., Zakaria, H., & Wiliantoro, P. (2022). Analisis Layanan Pelanggan PT PLN Berdasarkan Media Sosial Twitter Dengan Menggunakan Metode Naïve Bayes Classifier. OKTAL : Jurnal Ilmu Komputer dan Sains, 1(06), 573–582. https://journal.mediapublikasi.id/index.php/oktal/article/view/427
Puspitasari, A., & Zakaria, H. (2023). Sistem Informasi Aplikasi Penentuan Jurusan Yang Sesuai Dengan Minat Menggunakan Pendekatan Fuzzy Sugeno ( Studi Kasus : SMK Fadilah ). 1(3), 630–642.